Download Free Multilayers Book in PDF and EPUB Free Download. You can read online Multilayers and write the review.

This book focuses on an increasingly important area of materials science and technology, namely, the fabrication and properties of artificial materials where slabs of magnetized materials are sandwiched between slabs of nonmagnetized materials. It includes reviews by experts on the theory and descriptions of the various experimental techniques such as those using nuclear or electron spin probes, as well as optical, X-ray or neutron probes. It also reviews potential applications such as the giant magnetoresistance, and one specialized preparation technique, the electrodeposition. The various chapters are tutorial in nature, making the subject accessible to nonspecialists, as well as useful to researchers in the field.
Materials Research in thin and ultrathin magnetic structures is a multidisciplinary field which heavily relies on state-of-the-art growth, characterization and theoretical approaches to build a comprehensive physical picture on how magnetic properties depend on interfacial structural issues, interlayer coupling and transport phenomena. Often in this field, the critical properties and characterization required necessitates knowledge of structural and magnetic phenomena extending over several atomic planes. Atomic controlled growth techniques are required and atomic sensitivity is needed from magnetic and structural probes. This critical knowledge is vital for device applications, providing the basis for the synergistic interactions that are predominant in this field of research. This volume is the definitive reference source for anyone interested in the latest advances and results of current experimental research in ultrathin film magnetism.
The subject of this volume is to present both the numerical and graphical data on the magnetic and electrical properties of magnetic metallic multilayers which are composed with stacking up of double layers of thin films, one layer of which is at least the magnetic layer of 3d metals (M) or rare earth ones (R). Furthermore the data of the trilayers which have a top layer and bottom one of magnetic elements are also presented.
The theoretical background of this work is concerning with the drug loaded polyelectrolyte multilayers (PEM) modified by the host-guest interaction of biocompatible hyperbranched core-shell glycopolymers. The glycopolymer in this work is the hyperbranched polyethyleneimine that was modified with maltose moieties using reductive amination. Thus, the use of glycohyperbranched polymers for drug delivery would allow the avoid naturally occurring drug resistance due to decreased transporter activity. Concerning preparative method, PEM was fabricated using layer-by-layer (LbL) processes involve the sequential deposition of two polyions that physically bond together. Control was taken on the stoichiometric ratio related to cationic and anionic repeating units, which was chosen close to zero for the final applied PEM. Concerning analytical methods, a couple of physical-chemical methods were applied to characterize colloid stability, adhesiveness, drug loading and release of fabricated PEM. In conclusion, a highly sable and sustainable PEM coats on a surface of an activated solid substrate has been fabricated with an efficient ability to recycle the charged molecule for more than 24 times.
The Symposium on Magnetic Ultrathin Films, Multilayers and Surfaces, hosted by the European Materials Research Society, was held at the Palais de la Musique et des Congré in Strasbourg, France on June 4-7, 1996. Its central theme was the relationship of magnetic properties and device performance to structure at the nano and micrometer length scale. Research on the magnetism of surfaces, ultrathin films and multilayers has increased dramatically during recent years. This development was triggered by the discovery of coupling between ferromagnetic layers across nonmagnetic spacer layers and of the giant magnetoresistance effect in systems of reduced dimension using various micro and nanofabrication techniques has become a subject of special interest. It is certainly the promising application potential of these effects in new magnetic recording device geometries which causes this intensive research, which is done both by companies and at universities and research institutes. A selection of invited and contributed papers presented at the Symposium and accepted for publication is contained in this volume. The contents of these proceedings are organized into seven sections. A. Nanowires, Nanoparticles, Nanostructuring B. Ultrathin Films and Surfaces, Characterization C. Giant Magnetoresistance D. Coupling, Tunneling E. Growth, Structure, Magnetism F. Growth, Structure, Magnetoresistance G. Coupling, Magnetic processes, Magneto-optics. The first four sections contain invited and oral contributed papers in the listed research domains, while the last three sections contain the contributions presented during three large poster sessions.
In the continuing push toward optical computing, the focus remains on finding and developing the right materials. Characterizing materials, understanding the behavior of light in these materials, and being able to control the light are key players in the search for suitable optical materials. Optics in Magnetic Multilayers and Nanostructures presents an accessible introduction to optics in anisotropic magnetic media. While most of the literature presents only final results of the complicated formulae for the optics in anisotropic media, this book provides detailed explanations and full step-by-step derivations that offer insight into the procedure and reveal any approximations. Based on more than three decades of experimental research on the subject, the author explains the basic concepts of magnetooptics; nonreciprocal wave propagation; the simultaneous effect of crystalline symmetry and arbitrarily oriented magnetization on the form of permittivity tensors; spectral dependence of permittivity; multilayers at polar, longitudinal, transverse, and arbitrary magnetization; the effect of normal or near-normal incidence on multilayers; and anisotropic multilayer gratings. Making the subject of magnetooptics and anisotropic media approachable by the nonspecialist, Optics in Magnetic Multilayers and Nanostructures serves as an ideal introduction to newcomers and an indispensable reference for seasoned researchers.
This unified overview of recent progress in a growing, multi-disciplinary field places special emphasis on the industrial applications of magnetic multilayered materials. The text describes a wide range of physical aspects, together with experimental and theoretical methods.
A comprehensive treatment of the mechanics of multilayers and its implications for reliability, with easy-to-use software to compute key results.
Thin Metallic multilayer films have become an important part in today's computer technology. The giant magnetoresistance (GMR) effect, which plays a central role here, was discovered in the late 1980s. This can be essentially described as the effect of a magnetic field on the electron transport leading to significant changes in the resistance. Other aspects of multilayers systems, such as stability, growth, confinement are also addressed. Theoretical and experimental methods used in such work are described in some detail, with special emphasis on density functional and spin density functional theories. Magnetic anisotropy in thin films is also discussed while addressing unresolved issues and new results from exchange-bias experiments. - Discusses the GMR effect - What makes multilayers interesting and useful? - What are the latest discoveries in this field? - Simple insights in to the physics behind multilayers - Novel concepts at small length scales - Theoretical and experimental background
This second, comprehensive edition of the pioneering book in this fi eld has been completely revised and extended, now stretching to two volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin fi lms, covering organic, inorganic, colloidal, macromolecular, and biological components, as well as the assembly of nanoscale fi lms derived from them on surfaces. These two volumes are essential for anyone working in the field, as well as scientists and researchers active in materials development, who needs the key knowledge provided herein for linking the field of molecular self-assembly with the bio- and materials sciences.