Download Free Multifunctional Lightweight Structures Book in PDF and EPUB Free Download. You can read online Multifunctional Lightweight Structures and write the review.

This book presents key research findings on the combination of different technologies that promise to be particularly sustainable and broadly impactful in their application. The findings were compiled during the course of the first funding period for the MERGE Cluster of Excellence. New methods, potential solutions, and exemplary pilot applications take center stage as the text explores the next generation of functional integration via lightweight structures. The underlying manufacturing processes are based on textile, polymer, and metal processing techniques, all of which are suitable for large batch production, flexibility, and reproducibility.
Offers a review of the newest methodologies for the characterization and modelling of lightweight materials and structures Advances in Multifunctional Lightweight Structures offers a text that provides and in-depth analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures. The authors, noted experts on the topic, address the most recent and innovative methodologies for the characterization and modelling of lightweight materials and discuss various shell and plate theories. They present multifunctional materials and structures and offer detailed descriptions of the complex modelling of these structures. The text is divided into three sections that demonstrate a keen understanding and awareness for multi-functional lightweight structures by taking a unique approach. The authors explore multi-disciplinary modelling and characterization alongside benchmark problems and applications, topics that are rarely approached in this field. This important book: • Offers an analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures • Covers innovative methodologies for the characterization and modelling of lightweight materials and structures • Presents a characterization of a wide variety of novel materials • Considers multifunctional novel structures with potential applications in different high-tech industries • Includes efficient and highly accurate methodologies Written for professionals, engineers and researchers in industrial and other specialized research institutions, Advances in Multifunctional Lightweight Structures offers a much needed text to the design practices of existing engineering building services and how these methods combine with recent developments.
Advanced Lightweight Multifunctional Materials presents the current state-of-the-art on multifunctional materials research, focusing on different morphologies and their preparation and applications. The book emphasizes recent advances on these types of materials as well as their application. Chapters cover porous multifunctional materials, thermochromic and thermoelectric materials, shape memory materials, piezoelectric multifunctional materials, electrochromic and electrorheological, soft materials, magnetic and photochromic materials, and more. The book will be a valuable reference resource for academic researchers and industrial engineers working in the design and manufacture of multifunctional materials, composites and nanocomposites. - Provides detailed information on design, modeling and structural applications - Focuses on characteristics, processing, design and applications - Discusses the main types of lightweight multifunctional materials and processing techniques, as well as the physico-chemical insights that can lead to improved performance
Offers a review of the newest methodologies for the characterization and modelling of lightweight materials and structures Advanced Multifunctional Lightweight Aerostructures provides an in-depth analysis of the thermal, electrical, and mechanical responses of multi-functional lightweight structures. The authors, noted experts on the topic, address the most recent and innovative methodologies for the characterization and modelling of lightweight materials and discuss various multiscale simulation approaches and nonlinear/structural dynamics methodologies. They present multifunctional materials and structures and offer detailed descriptions of the complex modelling of these structures. The authors divide the text into two sections and demonstrate a keen understanding and awareness of multi-functional lightweight aerostructures by taking unique approaches. They explore multi-disciplinary modelling and characterization alongside benchmark problems and applications, topics that are rarely approached in this field. This important book: Offers thermal, electrical, and mechanical analyses of multi-functional lightweight structures Covers innovative methodologies for the characterization and modelling of lightweight materials and structures Presents characterizations of a wide variety of novel materials Considers multifunctional novel structures with potential applications in different high-tech industries Discusses thermal and mechanical behaviors of some critical parts of aircrafts Includes efficient and highly accurate methodologies Written for professionals, engineers, researchers, and educators in academia, industrial, and other specialized research institutions, Advanced Multifunctional Lightweight Aerostructures is a much-needed text on the design practices of existing engineering building services and how these methods combine with recent developments.
Integrated Design of Multiscale, Multifunctional Materials and Products is the first of its type to consider not only design of materials, but concurrent design of materials and products. In other words, materials are not just selected on the basis of properties, but the composition and/or microstructure iw designed to satisfy specific ranged sets of performance requirements. This book presents the motivation for pursuing concurrent design of materials and products, thoroughly discussing the details of multiscale modeling and multilevel robust design and provides details of the design methods/strategies along with selected examples of designing material attributes for specified system performance. It is intended as a monograph to serve as a foundational reference for instructors of courses at the senior and introductory graduate level in departments of materials science and engineering, mechanical engineering, aerospace engineering and civil engineering who are interested in next generation systems-based design of materials. - First of its kind to consider not only design of materials, but concurrent design of materials and products - Treatment of uncertainty via robust design of materials - Integrates the "materials by design approach" of Olson/Ques Tek LLC with the "materials selection" approach of Ashby/Granta - Distinquishes the processes of concurrent design of materials and products as an overall systems design problem from the field of multiscale modeling - Systematic mathematical algorithms and methods are introduced for robust design of materials, rather than ad hoc heuristics--it is oriented towards a true systems approach to design of materials and products
The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.
Adaptronics is the term encompassing technical fields that have become known internationally under the names "smart materials", "intelligent structures", and "smart structures". Adaptronics contributes to the optimisation of systems and products. It bridges the gap between material and system or product, and incorporates the search for multi-functional materials and elements and their integration in systems or structures. The authors of this book have taken on the task of displaying the current state of the art in this fascinating field. The system components, actuators, sensors and controllers, technical fundamentals, materials, design rules and practical solutions are all described. Selected sample applications are also presented and current development trends are demonstrated.
This book is about building craft for space travel—space travel not in the far distant future, but in the immediate future. There is no question that we have the technology to build and power a large craft capable of traversing the galaxy, and for now, this book will focus on achieving the goal of intragalactic travel. We will describe various methods of power generation and propulsion, delineate the materials and technology for construction, discuss the building of the spacecraft from the outside-in, and show what is required to sustain life on the craft for extended periods of time. While we will go into some detail on each of these, pointing out advantages and disadvantages to components and methods, this is not, nor is it intended to be, a highly technical book to be used by specialists. Rather, it is intended to inform the general readership about what is possible, and perhaps what is not, in building and operating spacecraft for long-distance and long-duration travel with current and available means.
This book presents the latest research advances and findings in the field of smart/multifunctional concretes, focusing on the principles, design and fabrication, test and characterization, performance and mechanism, and their applications in infrastructures. It also discusses future challenges in the development and application of smart/multifunctional concretes, providing useful theory, ideas and principles, as well as insights and practical guidance for developing sustainable infrastructures. It is a valuable resource for researchers, scientists and engineers in the field of civil-engineering materials and infrastructures.
Nanotechnology has been incorporated into a wide range of garments to improve the durability of clothing / apparel and create new properties for a special end-used application. It also incorporates wearable electronics into clothing to make it smarter. Smart nano-textiles refers to the uses and integration of smart nanocoatings, nanosensors and nanodevices in multifunctional textiles, since they are both low cost and have low power consumption. Various organic and inorganic nanomaterials can be used in garments to improve their properties and create new properties such as anti-bacterial, superhydrophobic, auto-cleaning, self-cleaning, stain repellent, wrinkle-free, static eliminating, fire resistant and electrically conductive properties. This book focuses on the fundamental concepts and approaches for the preparation of smart nanotextiles, their properties, and their applications in multifarious industries, including smart garments, biomedicine, construction/building materials, energy conversion/storage, automotive/aerospace industries and agriculture. Shows how nanotechnology is being used to be able to enhance textiles with smart properties, including anti-bacterial, superhydrophobic and auto-cleaning Explores which nanomaterial types are most compatible with particular textile classes Assesses the major challenges of integrating nanosensors and nanodevices into textiles