Download Free Multicriteria Decision Aid And Artificial Intelligence Book in PDF and EPUB Free Download. You can read online Multicriteria Decision Aid And Artificial Intelligence and write the review.

Presents recent advances in both models and systems for intelligent decision making. Organisations often face complex decisions requiring the assessment of large amounts of data. In recent years Multicriteria Decision Aid (MCDA) and Artificial Intelligence (AI) techniques have been applied with considerable success to support decision making in a wide range of complex real-world problems. The integration of MCDA and AI provides new capabilities relating to the structuring of complex decision problems in static and distributed environments. These include the handling of massive data sets, the modelling of ill-structured information, the construction of advanced decision models, and the development of efficient computational optimization algorithms for problem solving. This book covers a rich set of topics, including intelligent decision support technologies, data mining models for decision making, evidential reasoning, evolutionary multiobjective optimization, fuzzy modelling, as well as applications in management and engineering. Multicriteria Decision Aid and Artificial Intelligence: Covers all of the recent advances in intelligent decision making. Includes a presentation of hybrid models and algorithms for preference modelling and optimisation problems. Provides illustrations of new intelligent technologies and architectures for decision making in static and distributed environments. Explores the general topics on preference modelling and learning, along with the coverage of the main techniques and methodologies and applications. Is written by experts in the field. This book provides an excellent reference tool for the increasing number of researchers and practitioners interested in the integration of MCDA and AI for the development of effective hybrid decision support methodologies and systems. Academics and post-graduate students in the fields of operational research, artificial intelligence and management science or decision analysis will also find this book beneficial.
Presents recent advances in both models and systems for intelligent decision making. Organisations often face complex decisions requiring the assessment of large amounts of data. In recent years Multicriteria Decision Aid (MCDA) and Artificial Intelligence (AI) techniques have been applied with considerable success to support decision making in a wide range of complex real-world problems. The integration of MCDA and AI provides new capabilities relating to the structuring of complex decision problems in static and distributed environments. These include the handling of massive data sets, the modelling of ill-structured information, the construction of advanced decision models, and the development of efficient computational optimization algorithms for problem solving. This book covers a rich set of topics, including intelligent decision support technologies, data mining models for decision making, evidential reasoning, evolutionary multiobjective optimization, fuzzy modelling, as well as applications in management and engineering. Multicriteria Decision Aid and Artificial Intelligence: Covers all of the recent advances in intelligent decision making. Includes a presentation of hybrid models and algorithms for preference modelling and optimisation problems. Provides illustrations of new intelligent technologies and architectures for decision making in static and distributed environments. Explores the general topics on preference modelling and learning, along with the coverage of the main techniques and methodologies and applications. Is written by experts in the field. This book provides an excellent reference tool for the increasing number of researchers and practitioners interested in the integration of MCDA and AI for the development of effective hybrid decision support methodologies and systems. Academics and post-graduate students in the fields of operational research, artificial intelligence and management science or decision analysis will also find this book beneficial.
Intelligent Support Systems for Marketing Decisions examines new product development, market penetration strategies, and other marketing decisions utilizing a confluence of methods, including Decision Support Systems (DSS), Artificial Intelligence in Marketing and Multicriteria Analysis. The authors systematically examine the use and implementation of these methodologies in making strategic marketing decisions. Part I discusses the basic concepts of multicriteria analysis vis-à-vis marketing decisions and in new product development situations. Part II presents basic concepts from the fields of Information Systems, Decision Support Systems, and Intelligent Decision Support Methods. In addition, specialized categories of DSS (multicriteria DSS, web-based DSS, group DSS, spatial DSS) are discussed in terms of their key features and current use in marketing applications. Part III presents IDSS and a multicriteria methodology for new product development. Further chapters present a developmental strategy for analyzing, designing, and implementing an Intelligent Marketing Decision Support System. The implementation discussion is illustrated with a real-world example of the methods and system in use.
This book presents innovative and high-quality research regarding advanced decision support systems (DSSs). It describes the foundations, methods, methodologies, models, tools, and techniques for designing, developing, implementing and evaluating advanced DSSs in different fields, including finance, health, emergency management, industry and pollution control. Decision support systems employ artificial intelligence methods to heuristically address problems that are cannot be solved using formal techniques. In this context, technologies such as the Semantic Web, linked data, big data, and machine learning are being applied to provide integrated support for individuals and organizations to make more rational decisions. The book is organized into two parts. The first part covers decision support systems for industry, while the second part presents case studies related to clinical emergency management and pollution control.
This book provides a new point of view on the subject of business failure prediction, through the application of multicriteria analysis methods. The aim of the book is to provide a review of the research in the area and to explore the adequacy of these methods to one of the most complex problems in the area of financial management. In addition, the book explores the applications of the methods so that it can become a very useful tool for researchers and practitioners. The analysis of the modeling and the results in these applications provides the background for further employment of the methods.
This book constitutes the refereed conference proceedings of the 28th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2015, held in Seoul, South Korea, in June 2015. The 73 revised full papers presented were carefully reviewed and selected from 105 submissions. The papers cover a wide range of topics in applied artificial intelligence including reasoning, robotics, cognitive modeling, machine learning, pattern recognition, optimization, text mining, social network analysis, and evolutionary algorithms. They are organized in the following topical sections: theoretical AI, knowledge-based systems, optimization, Web and social networks, machine learning, classification, unsupervised learning, vision, image and text processing, and intelligent systems applications.
The book discusses a new approach to the classification problem following the decision support orientation of multicriteria decision aid. The book reviews the existing research on the development of classification methods, investigating the corresponding model development procedures, and providing a thorough analysis of their performance both in experimental situations and real-world problems from the field of finance. Audience: Researchers and professionals working in management science, decision analysis, operations research, financial/banking analysis, economics, statistics, computer science, as well as graduate students in management science and operations research.
Decision support systems (DSS) are widely touted for their effectiveness in aiding decision making, particularly across a wide and diverse range of industries including healthcare, business, and engineering applications. The concepts, principles, and theories of enhanced decision making are essential points of research as well as the exact methods, tools, and technologies being implemented in these industries. From both a standpoint of DSS interfaces, namely the design and development of these technologies, along with the implementations, including experiences and utilization of these tools, one can get a better sense of how exactly DSS has changed the face of decision making and management in multi-industry applications. Furthermore, the evaluation of the impact of these technologies is essential in moving forward in the future. The Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering explores how decision support systems have been developed and implemented across diverse industries through perspectives on the technology, the utilizations of these tools, and from a decision management standpoint. The chapters will cover not only the interfaces, implementations, and functionality of these tools, but also the overall impacts they have had on the specific industries mentioned. This book also evaluates the effectiveness along with benefits and challenges of using DSS as well as the outlook for the future. This book is ideal for decision makers, IT consultants and specialists, software developers, design professionals, academicians, policymakers, researchers, professionals, and students interested in how DSS is being used in different industries.
Presents the advances in decision support theory and practice with a focus on bridging the socio-technical gap. This book covers a wide range of topics including: Understanding DM, Design of DSS, Web 2.0 Systems in Decision Support, Business Intelligence and Data Warehousing, Applications of Multi-Criteria Decision Analysis, and more.
This book presents a collection of essays written by leading researchers to honor Roman Słowiński’s major scholarly interests and contributions. He is well-known for conducting extensive research on methodologies and techniques for intelligent decision support, where he combines operational research and artificial intelligence. The book reconstructs his main contributions, presents cutting-edge research and provides an outlook on the most promising and advanced domains of computer science and multiple criteria decision aiding. The respective chapters cover a wide range of related research areas, including decision sciences, ordinal data mining, preference learning and multiple criteria decision aiding, modeling of uncertainty and imprecision in decision problems, rough set theory, fuzzy set theory, multi-objective optimization, project scheduling and decision support applications. As such, the book will appeal to researchers and scholars in related fields.