Download Free Multicomponent Seismic Technology Book in PDF and EPUB Free Download. You can read online Multicomponent Seismic Technology and write the review.

An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.
Details the properties of 3D acquisition geometries and shows how they naturally lead to the 3D symmetric sampling approach to 3D survey design. Many examples are used to illustrate choices of acquisition parameters, and the link between survey parameters and noise suppression as well as imaging is an intrinsic part of the contents.
Hardcover plus DVD
This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 11th International Field Exploration and Development Conference (IFEDC 2021). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.
Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology is an interdisciplinary book bridging the fields of earth sciences and engineering. It covers topics on natural resources exploration as well as the application of geological exploration methods and techniques to engineering problems. Each topic is presented through theoretical approaches that are illustrated by case studies from around the globe. Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology is a key resource for both academics and professionals, offering both practical and applied knowledge in resources exploration and engineering geology. - Features new exploration technologies including seismic, satellite images, basin studies, geochemical modeling and analysis - Presents cases studies from different countries such as the Hoggar area (Algeria), Urals and Siberia (Russia), North of Chile (II and III regions), and North of Italy (Trentino Alto adige) - Includes applications of the novel methods discussed
Extrapolation of seismic waves from the earth's surface to any level in the subsurface plays an essential role in many advanced seismic processing schemes, such as migration, inverse scattering and redatuming. At present these schemes are based on the acoustic wave equation. This means not only that S-waves (shear waves) are ignored, but also that P-waves (compressional waves) are not handled correctly. In the seismic industry there is an important trend towards multi-component data acquisition. For processing of multi-component seismic data, ignoring S-waves can no longer be justified. Wave field extrapolation should therefore be based on the full elastic wave equation.In this book the authors review acoustic one-way extrapolation of P-waves and introduce elastic one-way extrapolation of P- and S-waves. They demonstrate that elastic extrapolation of multi-component data, decomposed into P- and S-waves, is essentially equivalent to acoustic extrapolation of P-waves. This has the important practical consequence that elastic processing of multi-component seismic data need not be significantly more complicated than acoustic processing of single-component seismic data. This is demonstrated in the final chapters, which deal with the application of wave field extrapolation in the redatuming process of single- and multi-component seismic data. Geophysicists, and anyone who is interested in a review of acoustic and elastic wave theory, will find this book useful. It is also a suitable textbook for graduate students and those following courses in elastic wave field extrapolation as each subject is introduced in a relatively simple manner using the scalar acoustic wave equation. In the chapters on elastic wave field extrapolation the formulation, whenever possible, is analogous to that used in the chapters on acoustic wave field extrapolation. The text is illustrated throughout and a bibliography and keyword index are provided.