Download Free Multi Valued Neutrosophic Distance Based Qualiflex Method For Treatment Selection Book in PDF and EPUB Free Download. You can read online Multi Valued Neutrosophic Distance Based Qualiflex Method For Treatment Selection and write the review.

Multi-valued neutrosophic sets (MVNSs) consider the truth-membership, indeterminacy-membership, and falsity-membership simultaneously, which can more accurately express the preference information of decision-makers. In this paper, the normalized multi-valued neutrosophic distance measure is developed firstly and the corresponding properties are investigated as well. Secondly, the normalized multi-valued neutrosophic distance difference is defined and the corresponding partial ordering relation is discussed. Thirdly, based on the developed distances and comparison method, an extended multi-valued neutrosophic QUALItative FLEXible multiple criteria (QUALIFLEX) method is proposed to handle MCDM problems where the weights of criteria are completely unknown. Finally, an example for selection of medical diagnostic plan is provided to demonstrate the proposed method, together with sensitivity analysis and comparison analysis.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
With respect to multi-criteria decision-making (MCDM) problems in which the criteria denote the form of single-valued neutrosophic sets (SVNSs), and the weight information is also fully unknown, a novel MCDM method based on qualitative flexible multiple criteria (QUALIFLEX) is developed. Firstly, the improved cosine measure of the included angle between two SVNSs is defined. Then, the improved single-valued neutrosophic projection is developed, and the corresponding improved single-valued neutrosophic bidirectional projection and single-valued neutrosophic bidirectional projection difference are investigated. Moreover, the partial ordering relation of SVNSs is developed. Secondly, an extended QUALIFLEX method based on an improved single-valued neutrosophic projection measure is proposed to handle MCDM problems in which the weights of criteria are completely unknown. Finally, an example for selection of a green supplier, as well as a performance comparison analysis, are provided to demonstrate the effectiveness of the proposed method.
As an extension of neutrosophic set, interval complex neutrosophic set is a new research topic in the field of neutrosophic set theory, which can handle the uncertain, inconsistent and incomplete information in periodic data. Distance measure is an important tool to solve some problems in engineering and science. Hence, this paper presents some interval complex neutrosophic distance measures to deal with multi-criteria group decision-making problems.
In recent years, hesitant fuzzy sets (HFSs) and neutrosophic sets (NSs) have become a subject of great interest for researchers and have been widely applied to multi-criteria group decision-making (MCGDM) problems. In this paper, multi-valued neutrosophic sets (MVNSs) are introduced, which allow the truth-membership, indeterminacymembership and falsity-membership degree have a set of crisp values between zero and one, respectively.
Multi-attribute decision-making problems under the trapezoidal fuzzy neutrosophic numbers environment are complex, particularly when the attribute value data are incomplete, and the attribute weight is completely unknown. As a solution, this study proposes a decision-making method based on information entropy and grey theory.
This book presents 27 methods of the Multiple Attribute Decision Making (MADM), which are not discussed in the existing books, nor studied in details, using more applications. Nowadays, decision making is one of the most important and fundamental tasks of management as an organizational goal achievement that depends on its quality. Decision making includes the correct expression of objectives, determining different and possible solutions, evaluating their feasibility, assessing the consequences, and the results of implementing each solution, and finally, selecting and implementing the solution. Multiple Criteria Decision Making (MCDM) is sum of the decision making techniques. MCDM is divided into the Multiple Objective Decision Making (MODM) for designing the best solution and MADM for selecting the best alternative. Given that the applications of MADM are mostly more than MODM, wide various techniques have been developed for MADM by researchers over the last 60 years, and the current book introduces some of the other new MADM methods.
This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.
In this article, we extend the original TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple attribute group decision making (MAGDM) problems.
This book introduces readers to the novel concept of spherical fuzzy sets, showing how these sets can be applied in practice to solve various decision-making problems. It also demonstrates that these sets provide a larger preference volume in 3D space for decision-makers. Written by authoritative researchers, the various chapters cover a large amount of theoretical and practical information, allowing readers to gain an extensive understanding of both the fundamentals and applications of spherical fuzzy sets in intelligent decision-making and mathematical programming.