Download Free Multi Valued Logic Neutrosophy And Schrodinger Equation Book in PDF and EPUB Free Download. You can read online Multi Valued Logic Neutrosophy And Schrodinger Equation and write the review.

This book was intended to discuss some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of ?identity?, which too often it has been accepted as given.Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. While some aspects of theoretical foundations of logic are discussed, this book is not intended solely for pure mathematicians, but instead for physicists in the hope that some of ideas presented herein will be found useful. The book is motivated by observation that despite almost eight decades, there is indication that some of those paradoxes known in Quantum Physics are not yet solved. In our knowledge, this is because the solution of those paradoxes requires re-examination of the foundations of logic itself, in particular on the notion of identity and multi-valuedness of entity. The book is also intended for young physicist fellows who think that somewhere there should be a ?complete? explanation of these paradoxes in Quantum Mechanics. If this book doesn?t answer all of their questions, it is our hope that at least it offers a new alternative viewpoint for these old questions.
There is beginning for anything; we used to hear that phrase.The same wisdom word applies to us too. What began in 2005 asa short email on some ideas related to interpretation of the WaveMechanics results in a number of papers and books up to now.Some of these papers can be found in Progress in Physics orelsewhere.Our purpose here is to present a selection of those papers in acompilation which enable the readers to find some coherentideas which appeared in those articles. For this reason, theordering of the papers here is based on categories of ideas.
This is an eclectic tome of 100 papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory,information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics ¿ containing 800 pages.It was my preoccupation and collaboration as author, co-author, translator, or co-translator, and editor with many scientists from around the world for long time. Many ideas from this book are to be developed and expanded in future explorations.
This volume is a collection of ten papers by contributors F. Smarandache, F. Yuhua, K. Mondal, S. Pramanik, S. Broumi, J. Ye, A. A. Salama,, N. Easa, S. A. Elhafez, M. M. Lotfy, L. Kong, Y. Wu, P. Biswas, B. C. Giri, A. Mukkerjee, and S. Sarkar, focusing on a new kind of algebraic structures called (T, I, F)- Neutrosophic Structures; Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Methods; Rough Neutrosophic Multi-Attribute Decision-Making Based on Rough Accuracy Score Function; an Extended TOPSIS Method for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertain Linguistic Variable; Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System; Fault Diagnosis Method of Gasoline Engines Using the Cosine Similarity Measure of Neutrosophic Numbers; Cosine Similarity Measure Based Multi-attribute Decision-making with Trapezoidal Fuzzy Neutrosophic Numbers; Thesis-Antithesis-Neutrothesis, and Neutrosynthesis; Negating Four Color Theorem with Neutrosophy and Quadstage Method; and A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The 78 authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements.
Symbolic (or Literal) Neutrosophic Theory is referring to the use of abstract symbols (i.e. the letters T, I, F, or their refined indexed letters Tj, Ik, Fl) in neutrosophics. In the first chapter we extend the dialectical triad thesis-antithesis-synthesis (dynamics of and , to get a synthesis) to the neutrosophic tetrad thesis-antithesis-neutrothesis-neutrosynthesis (dynamics of , , and , in order to get a neutrosynthesis). In the second chapter we introduce the neutrosophic system and neutrosophic dynamic system. A neutrosophic system is a quasi- or (t,i,f)–classical system, in the sense that the neutrosophic system deals with quasi-terms/concepts/attributes, etc. [or (t,i,f)-terms/concepts/attributes], which are approximations of the classical terms/concepts/attributes, i.e. they are partially true/membership/probable (t), partially indeterminate (i), and partially false/nonmembership/improbable (f), where t, i, f are subsets of the unitary interval [0, 1]. In the third chapter we introduce for the first time the notions of Neutrosophic Axiom, Neutrosophic Deducibility, Neutrosophic Axiomatic System, Degree of Contradiction (Dissimilarity) of Two Neutrosophic Axioms, etc. The fourth chapter we introduced for the first time a new type of structures, called (t, i, f)-Neutrosophic Structures, presented from a neutrosophic logic perspective, and we showed particular cases of such structures in geometry and in algebra. In any field of knowledge, each structure is composed from two parts: a space, and a set of axioms (or laws) acting (governing) on it. If the space, or at least one of its axioms (laws), has some indeterminacy of the form (t, i, f) ≠ (1, 0, 0), that structure is a (t, i, f)-Neutrosophic Structure. In the fifth chapter we make a short history of: the neutrosophic set, neutrosophic numerical components and neutrosophic literal components, neutrosophic numbers, etc. The aim of this chapter is to construct examples of splitting the literal indeterminacy (I) into literal sub-indeterminacies (I1,I2,…,Ir), and to define a multiplication law of these literal sub-indeterminacies in order to be able to build refined I-neutrosophic algebraic structures. In the sixth chapter we define for the first time three neutrosophic actions and their properties. We then introduce the prevalence order on (T, I, F) with respect to a given neutrosophic operator "o", which may be subjective - as defined by the neutrosophic experts. And the refinement of neutrosophic entities , , and . Then we extend the classical logical operators to neutrosophic literal (symbolic) logical operators and to refined literal (symbolic) logical operators, and we define the refinement neutrosophic literal (symbolic) space. In the seventh chapter we introduce for the first time the neutrosophic quadruple numbers (of the form a+bT+cI+dF) and the refined neutrosophic quadruple numbers. Then we define an absorbance law, based on a prevalence order, both of them in order to multiply the neutrosophic components T, I, F or their sub-components T_j, I_k, F_l and thus to construct the multiplication of neutrosophic quadruple numbers.
This book is a collection of six papers on Communication interpreted in a neutrosophic key, written by the editors (Florentin Smarandache, Bianca Teodorescu and Mirela Teodorescu) and other academics (Daniela Gîfu, Alice Ionescu, Simina Badea, Mădălina Strechie, and Mihaela-Gabriela Păun), discussing about scientific uncertainty and argumentative employment of paradox, examining the neutrosophic role of the translator and the neutrality in legal translation, investigating some mentalities and communication strategies in ancient civilizations, scrutinizing the metamorphosis of feelings into between-reality-conscience and neutro-reality in Camil Petrescu’s novels, or surveying the implications of Neutrosophy in Aesthetics, Arts, or Hermeneutics.
Progress in Physics has been created for publications on advanced studies in theoretical and experimental physics, including related themes from mathematics.
This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books.