Download Free Multi Scale Reliability And Serviceability Assessment Of In Service Long Span Bridges Book in PDF and EPUB Free Download. You can read online Multi Scale Reliability And Serviceability Assessment Of In Service Long Span Bridges and write the review.

With the development in global economic and transportation engineering, the traffic loads on brides have been growing steadily, which become potential safety hazards for existing bridges. In particular, long-span suspension bridges support heavy traffic volumes and simultaneous truck loads on the bridge deck, and thus the safety and serviceability of the bridge deserves investigation. In this book, a multiscale reliability method is presented for the safety assessment of long-span bridges. The multiscale failure condition of stiffness girders is the first-passage criteria for the large-scale model and the fatigue damage criteria for the small-scale model. It is the objective of this book to provide a more in-depth understanding of the vehicle-bridge interaction from the random vibration perspective. This book is suitable for adoption as a text book or a reference book in an advanced structural reliability analysis course. Furthermore, this book also provides a theoretical foundation for better understanding of the safety assessment, operation management, maintenance and reinforcement for long-span bridges and motivates further research and development for more advanced reliability and serviceability assessment techniques for long-span bridges.
Bridge design and construction technologies have experienced remarkable developments in recent decades, and numerous long-span bridges have been built or are under construction all over the world. Cable-supported bridges, including cable-stayed bridges and suspension bridges, are the main type of these long-span bridges, and are widely used in highways crossing gorges, rivers, and gulfs, due to their superior structural mechanical properties and beautiful appearance. However, cable-supported bridges suffer from harsh environmental effects and complex loading conditions, such as heavier traffic loads, strong winds, corrosion effects, and other natural disasters. Therefore, the lifetime safety evaluation of these long-span bridges considering the rigorous service environments is an essential task. Features: Presents a comprehensive explanation of system reliability evaluation for all aspects of cable-supported bridges. Includes a comprehensive presentation of the application of system reliability theory in bridge design, safety control, and operational management. Addresses fatigue reliability, dynamic reliability and seismic reliability assessment of bridges. Presents a complete investigation and case study in each chapter, allowing readers to understand the applicability for real-world scenarios. Reliability and Safety of Cable-Supported Bridges provides a comprehensive application and guidelines for system reliability techniques in cable-supported bridges. Serving as a practical educational resource for both undergraduate and graduate level students, practicing engineers, and researchers, it also intends to provide an intuitive appreciation for probability theory, statistical methods, and reliability analysis methods.
Science diplomacy and policy can support collaborative national and international science for advancing knowledge with societal impact in fields such as climate, space, medicine, and the environment., Scientific advances made possible by the basic and applied research carried out by government agencies, universities, and nongovernmental organizations create opportunities and challenges with growing impact on policy decisions. Developing structures that produce the best science information to policy makers is becoming more critical in an ever-changing world. This three-volume set presented by prominent figures from the disciplines of science, engineering, technology, and diplomacy includes their perspectives on potential solutions to opportunities 21st-century scientists, engineers, and diplomats face in the future: To shed light and interface science, technology, and engineering with the realm of policy; To provide a vision for the future by identifying obstacles and opportunities while focusing on several key issues.
Over the past two decades, extensive research has been conducted on the application of fiber-optic sensors (FOSs) in structural health monitoring (SHM). In Volume 1 of this book a long-gauge sensing technique for incorporating a proposed areawise sensing, developed by the authors, was introduced. High precision and good durability of the long-gauge sensors were also demonstrated via technical improvements that further enable the applications of optical fiber sensors and carbon fiber sensors. In Volume 2, based on the merits of the long-gauge sensors, the methods that have been developed for processing areawise distributed monitoring data for structural identification are introduced. A discussion follows on how those methods are capable of performing a rich recognition of local and global structural parameters including structural deflections, dynamic characteristics, damages, and loads. Also presented is a three-level method of structural performance evaluation that utilizes monitoring data and identified results.
Science diplomacy and policy can support collaborative national and international science for advancing knowledge with societal impact in fields such as climate, space, medicine, and the environment., Scientific advances made possible by the basic and applied research carried out by government agencies, universities, and nongovernmental organizations create opportunities and challenges with growing impact on policy decisions. Developing structures that produce the best science information to policy makers is becoming more critical in an ever-changing world. This three-volume set presented by prominent figures from the disciplines of science, engineering, technology, and diplomacy includes their perspectives on potential solutions to opportunities 21st-century scientists, engineers, and diplomats face in the future: To shed light and interface science, technology, and engineering with the realm of policy; To provide a vision for the future by identifying obstacles and opportunities while focusing on several key issues.
Science diplomacy and policy can support collaborative national and international science for advancing knowledge with societal impact in fields such as climate, space, medicine, and the environment., Scientific advances made possible by the basic and applied research carried out by government agencies, universities, and nongovernmental organizations create opportunities and challenges with growing impact on policy decisions. Developing structures that produce the best science information to policy makers is becoming more critical in an ever-changing world. This three-volume set presented by prominent figures from the disciplines of science, engineering, technology, and diplomacy includes their perspectives on potential solutions to opportunities 21st-century scientists, engineers, and diplomats face in the future: To shed light and interface science, technology, and engineering with the realm of policy; To provide a vision for the future by identifying obstacles and opportunities while focusing on several key issues.
Structural health monitoring (SHM) can be characterized as the integration of sensing and intelligence to enable the potential damage to be monitored, analyzed, localized, and predicted in real time and in a nondestructive manner. Over the past two decades, extensive research has demonstrated that fiber-optic sensors (FOSs) are well suited for SHM sensing requirements in infrastructure systems. In this book, a brief overview of SHM and the application of FOS are presented. The book focuses on advanced techniques that utilize fiber-optic long-gauge sensing and overcome the limitations of traditional sensing and fulfill the requirements of infrastructure systems. The long-gauge FOSs have the merit of revealing both micro- and macrolevel information. Subsequently, a new approach, areawise distributed monitoring, is thoroughly discussed and its superior performance in SHM demonstrated. Finally, the application of areawise distributed monitoring, combined with the aforementioned long-gauge sensing technique, is presented for groups and networks of complex infrastructure systems.
Bridge design and construction technologies have experienced remarkable developments in recent decades, and numerous long-span bridges have been built or are under construction all over the world. Cable-supported bridges, including cable-stayed bridges and suspension bridges, are the main type of these long-span bridges, and are widely used in highways crossing gorges, rivers, and gulfs, due to their superior structural mechanical properties and beautiful appearance. However, cable-supported bridges suffer from harsh environmental effects and complex loading conditions, such as heavier traffic loads, strong winds, corrosion effects, and other natural disasters. Therefore, the lifetime safety evaluation of these long-span bridges considering the rigorous service environments is an essential task. Features: Presents a comprehensive explanation of system reliability evaluation for all aspects of cable-supported bridges. Includes a comprehensive presentation of the application of system reliability theory in bridge design, safety control, and operational management. Addresses fatigue reliability, dynamic reliability and seismic reliability assessment of bridges. Presents a complete investigation and case study in each chapter, allowing readers to understand the applicability for real-world scenarios. Reliability and Safety of Cable-Supported Bridges provides a comprehensive application and guidelines for system reliability techniques in cable-supported bridges. Serving as a practical educational resource for both undergraduate and graduate level students, practicing engineers, and researchers, it also intends to provide an intuitive appreciation for probability theory, statistical methods, and reliability analysis methods.
Long span suspension bridges cost billions. In recent decades, structural health monitoring systems have been developed to measure the loading environment and responses of these bridges in order to assess serviceability and safety while tracking the symptoms of operational incidents and potential damage. This helps ensure the bridge functions properly during a long service life and guards against catastrophic failure under extreme events. Although these systems have achieved some success, this cutting-edge technology involves many complex topics that present challenges to students, researchers, and engineers alike. Systematically introducing the fundamentals and outlining the advanced technologies for achieving effective long-term monitoring, Structural Health Monitoring of Long-Span Suspension Bridges covers: The design of structural health monitoring systems Finite element modelling and system identification Highway loading monitoring and effects Railway loading monitoring and effects Temperature monitoring and thermal behaviour Wind monitoring and effects Seismic monitoring and effects SHMS-based rating method for long span bridge inspection and maintenance Structural damage detection and test-bed establishment These are applied in a rigorous case study, using more than ten years' worth of data, to the Tsing Ma suspension bridge in Hong Kong to examine their effectiveness in the operational performance of a real bridge. The Tsing Ma bridge is the world's longest suspension bridge to carry both a highway and railway, and is located in one of the world’s most active typhoon regions. Bridging the gap between theory and practice, this is an ideal reference book for students, researchers, and engineering practitioners.