Download Free Multi Scale Modelling Of The Epitaxial Growth Of Organic Thin Films On Insulating Surfaces Book in PDF and EPUB Free Download. You can read online Multi Scale Modelling Of The Epitaxial Growth Of Organic Thin Films On Insulating Surfaces and write the review.

The main objective of the work presented in this thesis is to contribute to the understanding of how the growth conditions may affect the surface morphology during deposition. In thin film growth physical processes in a very wide range of time and length scales are relevant. A set of quite different methods of modeling is required when aiming at a more or less complete realistic picture of the growth process. Accordingly, both computer simulations/modeling and analytic calculations were employed in our studies of thin film growth. In particular, a hybrid multi-scale model, which combines a kinetic Monte Carlo (KMC) simulation for the thermal surface diffusion with a Molecular Dynamics (MD) simulation of deposition events, was developed and successfully employed to study Cu/Cu(100) growth at a range of substrate temperatures and deposition angles. Predictive capabilities of this model allowed us to explain a number of puzzling experimental observations. Another accomplishment presented in this thesis is an analytic calculation of the surface current and selected mound angle for the case of epitaxial growth on fcc(111) surface. The results of this calculation help to understand the morphologies observed experimentally for a wide range of systems and deposition conditions.
Although there has been steady progress in understanding aspects of epitaxial growth throughout the last 30 years of modern surface science, work in this area has intensified greatly in the last 5 years. A number of factors have contributed to this expansion. One has been the general trend in surface science to tackle problems of increasing complexity as confidence is gained in the methodology, so for example, the role of oxide/metal interfaces in determining the properties of many practical supported catalysts is now being explored in greater detail. A second factor is the recognition of the potential importance of artificial multilayer materials not only in semiconductor devices but also in metal/metal systems because of their novel magnetic properties. Perhaps even more important than either of these application areas, however, is the newly-discovered power of scanning probe microscopies, and most notably scanning tunneling microscopy (STM), to provide the means to study epitaxial growth phenomena on an atomic scale under a wide range of conditions. These techniques have also contributed to revitalised interest in methods of fabricating and exploiting artificial structures (lateral as well as in layers) on a nanometre scale. This volume, on Growth and Properties of Ultrathin Epitaxial Layers, includes a collection of articles which reflects the present state of activity in this field. The emphasis is on metals and oxides rather than semiconductors.
Epitaxial Growth Part B is the second part of a collection of review articles that describe various aspects of the growth of single-crystal films on single-crystal substrates. The topics discussed are the nucleation of thin films, the structure of the interface between film and substrate, and the generation of defects during film growth. The methods used to prepare and examine thin films are described and a list of the overgrowth-substrate combinations studied so far is given.
Epitaxial Growth, Part A is a compilation of review articles that describe various aspects of the growth of single-crystal films on single-crystal substrates. The collection contains topics on the historical development of epitaxy, the nucleation of thin films, the structure of the interface between film and substrate, and the generation of defects during film growth. The text also provides descriptions of the methods used to prepare and examine thin films and a list of the overgrowth-substrate combinations studied. Mineralogists, materials engineers and scientists, and physicists will find this book a great source of insight.
Volume IIIA Basic Techniques Handbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures. Volume IIIB Materials, Processes, and Technology Handbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials. Volume IIIA Basic Techniques Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology Describes atomic level epitaxial deposition and other low temperature growth techniques Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials
Our understanding and control of epitaxial oxide heterostructures has progressed along multiple frontiers including magnetic, dielectric, ferroelectric, and superconducting oxide materials. This has resulted in both independent rediscovery and the successful borrowing of ideas from ceramic science, solid-state physics, and semiconductor epitaxy. A new field of materials science has emerged which aims at the use of the intrinsic properties of various oxide materials in single-crystal thin-film form. Exploiting the potential of these materials, however, will only be possible if many fundamental and engineering questions can be answered. This book represents continued progress toward fulfilling that promise. Technical information on epitaxial oxide thin films from industry, academia and government laboratories is presented. Topics include: dielectrics; ferroelectrics; optics; superconductors; magnetics; magnetoresistance.
In a field as diverse as Chemical Modelling it can be difficult to keep up with the literature, or discover the latest applications of computational and theoretical chemistry. Specialist Periodical Reports present comprehensive and critical reviews of the recent literature, providing the reader with informed opinion and latest detailed information in their field. The latest volume of Chemical Modelling presents a diverse range of authors invited by the volume editors. Topics include Quantum Chemistry of Large Systems, Theoretical Studies of Special Relativity in Atoms and Molecules, MOFs: From Theory Towards Applications, and Multi-Scale Modelling. Other chapters look at Catalysis, Descriptive DFT, Phase Transitions. An essential resource for experienced researchers and those just entering the field of chemical modelling, this latest Specialist Periodical Report is an essential resource for any research group active in the field or chemical sciences library.
Epitaxial growth is a crucial process in much of materials science. Technological applications abound, ranging from 'classical' examples such as magnetic recording devices, superconducting thin films and quantum dots, to more 'esoteric' applications in biological systems and nanotechnology. This book provides an overview of accomplishments to date, as well as the challenges that lie ahead. Several chapters indicate that a wide range of experimental techniques yields a wealth of information needed to develop reliable computational models. Measured data includes static features (island distribution, morphology, etc.) as well as dynamics (diffusion of atoms and islands). Contributions address efforts to co-ordinate these experimental observations with computational approaches. Also touched upon are the technological applications of epitaxially grown systems and illustrate the need for a better fundamental understanding of the phenomena. Topics include: alloying and effects of impurities; island distribution; strain and dislocation growth; sputter- and ion-assisted deposition and surface diffusion