Download Free Multi Objective Optimization Techniques And Applications In Chemical Engineering With Cd Rom Book in PDF and EPUB Free Download. You can read online Multi Objective Optimization Techniques And Applications In Chemical Engineering With Cd Rom and write the review.

Following a brief introduction and general review on the development of multi-objective optimization applications in chemical engineering since 2000, the book gives a description of selected multi-objective techniques and then goes on to discuss chemical engineering applications. These applications are from diverse areas within chemical engineering, and are presented in detail. Several exercises are included at the end of many chapters.
Optimization has been playing a key role in the design, planning and operation of chemical and related processes for nearly half a century. Although process optimization for multiple objectives was studied by several researchers back in the 1970s and 1980s, it has attracted active research in the last 10 years, spurred by the new and effective techniques for multi-objective optimization. In order to capture this renewed interest, this monograph presents the recent and ongoing research in multi-optimization techniques and their applications in chemical engineering. Following a brief introduction and general review on the development of multi-objective optimization applications in chemical engineering since 2000, the book gives a description of selected multi-objective techniques and then goes on to discuss chemical engineering applications. These applications are from diverse areas within chemical engineering, and are presented in detail. All chapters will be of interest to researchers in multi-objective optimization and/or chemical engineering; they can be read individually and used in one''s learning and research. Several exercises are included at the end of many chapters, for use by both practicing engineers and students.
Optimization has played a key role in the design, planning and operation of chemical and related processes, for several decades. Global optimization has been receiving considerable attention in the past two decades. Of the two types of techniques for global optimization, stochastic global optimization is applicable to any type of problems having non-differentiable functions, discrete variables and/or continuous variables. It, thus, shows significant promise and potential for process optimization.So far, there are no books focusing on stochastic global optimization and its applications in chemical engineering. Stochastic Global Optimization — a monograph with contributions by leading researchers in the area — bridges the gap in this subject, with the aim of highlighting and popularizing stochastic global optimization techniques for chemical engineering applications. The book, with 19 chapters in all, is broadly categorized into two sections that extensively cover the techniques and the chemical engineering applications.
The conference on ‘Interdisciplinary Research in Technology and Management” was a bold experiment in deviating from the traditional approach of conferences which focus on a specific topic or theme. By attempting to bring diverse inter-related topics on a common platform, the conference has sought to answer a long felt need and give a fillip to interdisciplinary research not only within the technology domain but across domains in the management field as well. The spectrum of topics covered in the research papers is too wide to be singled out for specific mention but it is noteworthy that these papers addressed many important and relevant concerns of the day.
Optimization is now essential in the design, planning and operation of chemical and related processes. Although process optimization for multiple objectives was studied in the 1970s and 1980s, it has attracted active research in the last 15 years, spurred by the new and effective techniques for multi-objective optimization (MOO). To capture this renewed interest, this monograph presents recent research in MOO techniques and applications in chemical engineering.Following a brief introduction and review of MOO applications in chemical engineering since 2000, the book presents selected MOO techniques and many chemical engineering applications in detail. In this second edition, several chapters from the first edition have been updated, one chapter is completely revised and three new chapters have been added. One of the new chapters describes three MS Excel programs useful for MOO of application problems. All the chapters will be of interest to researchers in MOO and/or chemical engineering. Several exercises are included at the end of many chapters, for use by both practicing engineers and students.
This book is a compilation of the various recently developed techniques emphasizing better chemical processes and products, with state-of-the-art contributions by world-renowned leaders in process design and optimization. It covers various areas such as grass-roots design, retrofitting, continuous and batch processing, energy efficiency, separations, and pollution prevention, striking a balance between fundamental techniques and applications. The book also contains industrial applications and will serve as a good compilation of recent industrial experience for which the process design and optimization techniques were applied to enhance sustainability. Academic researchers and industrial practitioners will find this book useful as a review of systematic approaches and best practices in sustainable design and optimization of industrial processes. The book is accompanied by some electronic supplements (i.e., models and programs) for selected chapters.
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 7. Ant colony optimization : details of algorithms suitable for process engineering / V.K. Jayaraman [und weitere] -- ch. 8. Particle swarm optimization for solving NLP and MINLP in chemical engineering / Bassem Jarboui [und weitere] -- ch. 9. An introduction to the harmony search algorithm / Gordon Ingram and Tonghua Zhang -- ch. 10. Meta-heuristics : evaluation and reporting techniques / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 11. A hybrid approach for constraint handling in MINLP optimization using stochastic algorithms / G.A. Durand [und weitere] -- ch. 12. Application of Luus-Jaakola optimization procedure to model reduction, parameter estimation and optimal control / Rein Luus -- ch. 13. Phase stability and equilibrium calculations in reactive systems using differential evolution and tabu search / Adrian Bonilla-Petriciolet [und weitere] -- ch. 14. Differential evolution with tabu list for global optimization : evaluation of two versions on benchmark and phase stability problems / Mekapati Srinivas and Gade Pandu Rangaiah -- ch. 15. Application of adaptive random search optimization for solving industrial water allocation problem / Grzegorz Poplewski and Jacek M. Jezowski -- ch. 16. Genetic algorithms formulation for retrofitting heat exchanger network / Roman Bochenek and Jacek M. Jezowski -- ch. 17. Ant colony optimization for classification and feature selection / V.K. Jayaraman [und weitere] -- ch. 18. Constraint programming and genetic algorithm / Prakash R. Kotecha, Mani Bhushan and Ravindra D. Gudi -- ch. 19. Schemes and implementations of parallel stochastic optimization algorithms application of tabu search to chemical engineering problems / B. Lin and D.C. Miller
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
This book comprises select papers from the International Conference on Artificial Intelligence and Sustainable Engineering (AISE 2020). The volume focuses on the recent advancements in artificial intelligence and addresses how it is useful in achieving truly sustainable solutions. The key strands of this book include artificial intelligence in healthcare, IoT for modern life, security and surveillance, big data analytics, machine learning and computing, communication technologies, gesture technology, virtual intelligence, and audio & speech processing. The book addresses sustainability challenges in various computing techniques and opportunities for sustainable engineering based on AI and supporting tools such as engineering design for sustainable development using IoT/AI, smart cities: waste minimization, remanufacturing, reuse and recycling technologies using IoT/AI, industry 4.0, intelligent and smart grid systems, energy conservation using technology, green engineering/technology, robotic process automation (RPA) and water and air quality management. This book can be a valuable resource for academicians, researchers, and professionals working in AI and its applications.