Download Free Multi Objective Optimization In Computational Intelligence Theory And Practice Book in PDF and EPUB Free Download. You can read online Multi Objective Optimization In Computational Intelligence Theory And Practice and write the review.

Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.
This collection of recent studies spans a range of computational intelligence applications, emphasizing their application to challenging real-world problems. Covers Intelligent agent-based algorithms, Hybrid intelligent systems, Machine learning and more.
In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc. Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporation of expert systems and human-system interface, single and multiobjective algorithms, data mining and statistical analysis, analysis of real-world cases (such as multidisciplinary design optimization). The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems.
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs.
"This book presents the most recent and established developments of Particle swarm optimization (PSO) within a unified framework by noted researchers in the field"--Provided by publisher.
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.
This book focuses on the core areas of computing and their applications in the real world. Presenting papers from the Computing Conference 2020 covers a diverse range of research areas, describing various detailed techniques that have been developed and implemented. The Computing Conference 2020, which provided a venue for academic and industry practitioners to share new ideas and development experiences, attracted a total of 514 submissions from pioneering academic researchers, scientists, industrial engineers and students from around the globe. Following a double-blind, peer-review process, 160 papers (including 15 poster papers) were selected to be included in these proceedings. Featuring state-of-the-art intelligent methods and techniques for solving real-world problems, the book is a valuable resource and will inspire further research and technological improvements in this important area.