Download Free Multi Objective Decision Analysis Book in PDF and EPUB Free Download. You can read online Multi Objective Decision Analysis and write the review.

Whether managing strategy, operations or products, knowing how to make the best decision in a complex, uncertain business environment is difficult. You might be faced with multiple, competing objectives, which means making trade-offs. To complicate matters, any uncertainty makes it hard to explicitly understand how different objectives will impact potential outcomes. This book will help you face these problems. It provides a decision analysis framework implemented as a simple spreadsheet tool. This multi-objective decision analysis framework helps you to measure trade-offs among objectives and incorporate uncertainties and risk preferences. With this book, you will be able to identify what information is needed to make a decision, define how that information should be combined, and, finally, provide quantifiable evidence to clearly communicate and justify the decision. The process involves minimal overhead and is perfect for busy professionals who need a simple, structured process for making, tracking, and communicating decisions. This process makes decision making more efficient by focusing only on information and factors that are well-defined, measureable, and relevant to the decision at hand. The framework requires clear characterization of a decision, ensuring that it can be traced and is consistent with the intended objectives and organizational values. Using this structured decision-making framework, anyone can consistently make better decisions to gain competitive and strategic advantage.
Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . ,. ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together.
This book describes how a confused decision maker, who wishes to make a reasonable and responsible choice among alternatives, can systematically probe their thoughts and feelings in order to make the critically important trade-offs between incommensurable objectives.
Are we safer from terrorism today and is our homeland security money well spent? This book offers answers and more.
Multi-objective programming (MOP) can simultaneously optimize multi-objectives in mathematical programming models, but the optimization of multi-objectives triggers the issue of Pareto solutions and complicates the derived answers. To address these problems, researchers often incorporate the concepts of fuzzy sets and evolutionary algorithms into M
Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, Second Edition, provides readers with tactics they can use to optimally select materials to satisfy complex design problems when they are faced with the vast range of materials available. Current approaches to materials selection range from the use of intuition and experience, to more formalized computer-based methods, such as electronic databases with search engines to facilitate the materials selection process. Recently, multi-criteria decision-making (MCDM) methods have been applied to materials selection, demonstrating significant capability for tackling complex design problems. This book describes the rapidly growing field of MCDM and its application to materials selection. It aids readers in producing successful designs by improving the decision-making process. This new edition updates and expands previous key topics, including new chapters on materials selection in the context of design problem-solving and multiple objective decision-making, also presenting a significant amount of additional case studies that will aid in the learning process. - Describes the advantages of Quality Function Deployment (QFD) in the materials selection process through different case studies - Presents a methodology for multi-objective material design optimization that employs Design of Experiments coupled with Finite Element Analysis - Supplements existing quantitative methods of materials selection by allowing simultaneous consideration of design attributes, component configurations, and types of material - Provides a case study for simultaneous materials selection and geometrical optimization processes
This book proposes a set of models to describe fuzzy multi-objective decision making (MODM), fuzzy multi-criteria decision making (MCDM), fuzzy group decision making (GDM) and fuzzy multi-objective group decision-making problems, respectively. It also gives a set of related methods (including algorithms) to solve these problems. One distinguishing feature of this book is that it provides two decision support systems software for readers to apply these proposed methods. A set of real-world applications and some new directions in this area are then described to further instruct readers how to use these methods and software in their practice.
Multiple Criteria Decision Making (MCDM) is the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process. A key area of research in OR/MS, MCDM is now being applied in many new areas, including GIS systems, AI, and group decision making. This volume is in effect the third in a series of Springer books by these editors (all in the ISOR series), and it brings all the latest developments in MCDM into focus. Looking at developments in the applications, methodologies and foundations of MCDM, it presents research from leaders in the field on such topics as Problem Structuring Methodologies; Measurement Theory and MCDA; Recent Developments in Evolutionary Multiobjective Optimization; Habitual Domains and Dynamic MCDM in Changeable Spaces; Stochastic Multicriteria Acceptability Analysis; and many more chapters.
The axiomatic foundations of the Bayesian approach to decision making assurne precision in the decision maker's judgements. In practicc, dccision makers often provide only partial and/or doubtful information. We unify and expand results to deal with those cases introducing a general framework for sensitivity analysis in multi-objective decision making. We study first decision making problems under partial information. We provide axioms leading to modelling preferences by families of value functions, in problems under certainty, and moJelling beliefs by families of probability distributions and preferences by familics of utility functions, in problems under uncertainty. Both problems are treated in parallel with the same parametric model. Alternatives are ordered in a Pareto sense, the solution of the problem being the set of non dominated alternatives. Potentially optimal solutions also seem acceptable, from an intuitive point of view and due to their relation with the nondominated ones. Algorithms are provided to compute these solutions in general problems and in cases typical in practice: linear and bilinear problems. Other solution concepts are criticised on the grounds of being ad hoc. In summary, we have a more ro bust theory of decision making based on a weaker set ofaxioms, but embodying coherence, since it essentially implies carrying out a family of coherent dccision anitlyses.
This book integrates multiple criteria concepts and methods for problems within the Risk, Reliability and Maintenance (RRM) context. The concepts and foundations related to RRM are considered for this integration with multicriteria approaches. In the book, a general framework for building decision models is presented and this is illustrated in various chapters by discussing many different decision models related to the RRM context. The scope of the book is related to ways of how to integrate Applied Probability and Decision Making. In Applied Probability, this mainly includes: decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In Decision Making, it includes a broad range of topics in MCDM (Multi-Criteria Decision Making) and MCDA (Multi-Criteria Decision Aiding; also known as Multi-Criteria Decision Analysis). In addition to decision analysis, some of the topics related to Mathematical Programming area are briefly considered, such as multiobjective optimization, since methods related to these topics have been applied to the context of RRM. The book addresses an innovative treatment for the decision making in RRM, thereby improving the integration of fundamental concepts from the areas of both RRM and decision making. This is accomplished by presenting an overview of the literature on decision making in RRM. Some pitfalls of decision models when applying them to RRM in practice are discussed and guidance on overcoming these drawbacks is offered. The procedure enables multicriteria models to be built for the RRM context, including guidance on choosing an appropriate multicriteria method for a particular problem faced in the RRM context. The book also includes many research advances in these topics. Most of the multicriteria decision models that are described are specific applications that have been influenced by this research and the advances in this field. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis is implicitly structured in three parts, with 12 chapters. The first part deals with MCDM/A concepts methods and decision processes. The second part presents the main concepts and foundations of RRM. Finally the third part deals with specific decision problems in the RRM context approached with MCDM/A models.