Download Free Multi Model Jumping Systems Robust Filtering And Fault Detection Book in PDF and EPUB Free Download. You can read online Multi Model Jumping Systems Robust Filtering And Fault Detection and write the review.

This book focuses on multi-model systems, describing how to apply intelligent technologies to model complex multi-model systems by combining stochastic jumping system, neural network and fuzzy models. It focuses on robust filtering, including finite-time robust filtering, finite-frequency robust filtering and higher order moment robust filtering schemes, as well as fault detection problems for multi-model jump systems, such as observer-based robust fault detection, filtering-based robust fault detection and neural network-based robust fault detection methods. The book also demonstrates the validity and practicability of the theoretical results using simulation and practical examples, like circuit systems, robot systems and power systems. Further, it introduces readers to methods such as finite-time filtering, finite-frequency robust filtering, as well as higher order moment and neural network-based fault detection methods for multi-model jumping systems, allowing them to grasp the modeling, analysis and design of the multi-model systems presented and implement filtering and fault detection analysis for various systems, including circuit, network and mechanical systems.
It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of a high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic manipulator systems, integrated communication networks and large-scale flexible structures for space stations, and are inherently vulnerable to abrupt changes in their structures caused by component or interconnection failures. In this regard, a particularly interesting class of models is the so-called Markov jump linear systems (MJLS), which have been used in numerous applications including robotics, economics and wireless communication. Combining probability and operator theory, the present volume provides a unified and rigorous treatment of recent results in control theory of continuous-time MJLS. This unique approach is of great interest to experts working in the field of linear systems with Markovian jump parameters or in stochastic control. The volume focuses on one of the few cases of stochastic control problems with an actual explicit solution and offers material well-suited to coursework, introducing students to an interesting and active research area. The book is addressed to researchers working in control and signal processing engineering. Prerequisites include a solid background in classical linear control theory, basic familiarity with continuous-time Markov chains and probability theory, and some elementary knowledge of operator theory. ​
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
​Stochastic Control and Filtering over Constrained Communication Networks presents up-to-date research developments and novel methodologies on stochastic control and filtering for networked systems under constrained communication networks. It provides a framework of optimal controller/filter design, resilient filter design, stability and performance analysis for the systems considered, subject to various kinds of communication constraints, including signal-to-noise constraints, bandwidth constraints, and packet drops. Several techniques are employed to develop the controllers and filters desired, including: recursive Riccati equations; matrix decomposition; optimal estimation theory; and mathematical optimization methods. Readers will benefit from the book’s new concepts, models and methodologies that have practical significance in control engineering and signal processing. Stochastic Control and Filtering over Constrained Communication Networks is a practical research reference for engineers dealing with networked control and filtering problems. It is also of interest to academics and students working in control and communication networks.
In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modelling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information reflects the state-of-the-art of the research area for handling randomly occurring incomplete information from three interrelated aspects of control, filtering and fault detection. Recent advances in networked control systems and distributed filtering over sensor networks are covered, and application potential in mobile robotics is also considered. The reader will benefit from the introduction of new concepts, new models and new methodologies with practical significance in control engineering and signal processing. Key Features: Establishes a unified framework for filtering, control and fault detection problem for various discrete-time nonlinear stochastic systems with randomly occurring incomplete information Investigates several new concepts for randomly occurring phenomena and proposes a new system model to better describe network-induced problems Demonstrates how newly developed techniques can handle emerging mathematical and computational challenges Contains the latest research results Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information provides a unified yet neat framework for control/filtering/fault-detection with randomly occurring incomplete information. It is a comprehensive textbook for graduate students and is also a useful practical research reference for engineers dealing with control, filtering and fault detection problems for networked systems.
Networked Control Systems (NCS) is a growing field of application and calls for the development of integrated approaches requiring multidisciplinary skills in control, real-time computing and communication protocols. This book describes co-design approaches, and establishes the links between the QoC (Quality of Control) and QoS (Quality of Service) of the network and computing resources. The methods and tools described in this book take into account, at design level, various parameters and properties that must be satisfied by systems controlled through a network. Among the important network properties examined are the QoC, the dependability of the system, and the feasibility of the real-time scheduling of tasks and messages. Correct exploitation of these approaches allows for efficient design, diagnosis, and implementation of the NCS. This book will be of great interest to researchers and advanced students in automatic control, real-time computing, and networking domains, and to engineers tasked with development of NCS, as well as those working in related network design and engineering fields.
Unifies existing and emerging concepts concerning multi-objective control and stochastic control with engineering-oriented phenomena Establishes a unified theoretical framework for control and filtering problems for a class of discrete-time nonlinear stochastic systems with consideration to performance Includes case studies of several nonlinear stochastic systems Investigates the phenomena of incomplete information, including missing/degraded measurements, actuator failures and sensor saturations Considers both time-invariant systems and time-varying systems Exploits newly developed techniques to handle the emerging mathematical and computational challenges
Non-monotonic Approach to Robust H8 Control of Multi-model Systems focuses on robust analysis and synthesis problems for multi-model systems based on the non-monotonic Lyapunov Functionals (LFs) approach that enlarges the stability region and improves control performance. By fully considering the diversity of switching laws, the multi-step time difference, the multi-step prediction, and the expansion of system dimension, the non-monotonic LF can be properly constructed. The focus of this book is placed on the H8 state feedback control, H8 filtering and H8 output feedback control for multi-model systems via a non-monotonic LF approach. The book's authors provide illustrative examples to show the feasibility and efficiency of the proposed methods, along with practical examples that demonstrate the effectiveness and potential of theoretical results.
This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analysis, robust controller design, and robust filter design for the considered systems. Solutions to the design problems are presented in terms of LMIs. The book is a timely reflection of the developing area of filtering and control theories for Markovian jump hybrid systems with various kinds of imperfect information. It is a collection of a series of latest research results and therefore serves as a useful textbook for senior and/or graduate students who are interested in knowing 1) the state-of-the-art of linear filtering and control areas, and 2) recent advances in stochastic jump hybrid systems. The readers will also benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.