Download Free Multi Modal Scene Understanding For Robotic Grasping Book in PDF and EPUB Free Download. You can read online Multi Modal Scene Understanding For Robotic Grasping and write the review.

This book presents state-of-the-art computational attention models that have been successfully tested in diverse application areas and can build the foundation for artificial systems to efficiently explore, analyze, and understand natural scenes. It gives a comprehensive overview of the most recent computational attention models for processing visual and acoustic input. It covers the biological background of visual and auditory attention, as well as bottom-up and top-down attentional mechanisms and discusses various applications. In the first part new approaches for bottom-up visual and acoustic saliency models are presented and applied to the task of audio-visual scene exploration of a robot. In the second part the influence of top-down cues for attention modeling is investigated.
The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand’s functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand’s function for grasping and manipulation of everyday life objects. This monograph explores the hypothesis that the confluence of both scientific fields, the biomechanical study of the human hand and the analysis of robotic manipulation of objects, would greatly benefit and advance both disciplines through simulation. Therefore, in this book, the current knowledge of robotics and biomechanics guides the design and implementation of a simulation framework focused on manipulation interactions that allows the study of the grasp through simulation. As a result, a valuable framework for the study of the grasp, with relevant applications in several fields such as robotics, biomechanics, ergonomics, rehabilitation and medicine, has been made available to these communities.
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
This book constitutes the thoroughly refereed post-conference proceedings of the 12th International Conference on Mobile Computing, Applications, and Services, MobiCASE 2021, held in November 2021. Due to COVID-19 pandemic the conference was held virtually. The 9 full papers were carefully reviewed and selected from 21 submissions. The papers are organized in two topical tracks: mobile application and deep learning, and mobile application with data analysis.
The 9-volume set LNAI 14267-14275 constitutes the proceedings of the 16th International Conference on Intelligent Robotics and Applications, ICIRA 2023, which took place in Hangzhou, China, during July 5–7, 2023. The 413 papers included in these proceedings were carefully reviewed and selected from 630 submissions. They were organized in topical sections as follows: Part I: Human-Centric Technologies for Seamless Human-Robot Collaboration; Multimodal Collaborative Perception and Fusion; Intelligent Robot Perception in Unknown Environments; Vision-Based Human Robot Interaction and Application. Part II: Vision-Based Human Robot Interaction and Application; Reliable AI on Machine Human Reactions; Wearable Sensors and Robots; Wearable Robots for Assistance, Augmentation and Rehabilitation of Human Movements; Perception and Manipulation of Dexterous Hand for Humanoid Robot. Part III: Perception and Manipulation of Dexterous Hand for Humanoid Robot; Medical Imaging for Biomedical Robotics; Advanced Underwater Robot Technologies; Innovative Design and Performance Evaluation of Robot Mechanisms; Evaluation of Wearable Robots for Assistance and Rehabilitation; 3D Printing Soft Robots. Part IV: 3D Printing Soft Robots; Dielectric Elastomer Actuators for Soft Robotics; Human-like Locomotion and Manipulation; Pattern Recognition and Machine Learning for Smart Robots. Part V: Pattern Recognition and Machine Learning for Smart Robots; Robotic Tactile Sensation, Perception, and Applications; Advanced Sensing and Control Technology for Human-Robot Interaction; Knowledge-Based Robot Decision-Making and Manipulation; Design and Control of Legged Robots. Part VI: Design and Control of Legged Robots; Robots in Tunnelling and Underground Space; Robotic Machining of Complex Components; Clinically Oriented Design in Robotic Surgery and Rehabilitation; Visual and Visual-Tactile Perception for Robotics. Part VII: Visual and Visual-Tactile Perception for Robotics; Perception, Interaction, and Control of Wearable Robots; Marine Robotics and Applications; Multi-Robot Systems for Real World Applications; Physical and Neurological Human-Robot Interaction. Part VIII: Physical and Neurological Human-Robot Interaction; Advanced Motion Control Technologies for Mobile Robots; Intelligent Inspection Robotics; Robotics in Sustainable Manufacturing for Carbon Neutrality; Innovative Design and Performance Evaluation of Robot Mechanisms. Part IX: Innovative Design and Performance Evaluation of Robot Mechanisms; Cutting-Edge Research in Robotics.
Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot's view in order to explore interaction possibilities of the scene.
This book constitutes the refereed proceedings of the 8th International Conference on Interactive Collaborative Robotics, ICR 2023, held in Baku, Azerbaijan, during October 25–29, 2023. The 33 full papers included in this book were carefully reviewed and selected from 56 submissions. They were organized in topical sections as follows: focused the foundations and means of collaborative behavior of one or more robots physically interacting with hu-mans in operational environments configured with embedded sensor networks and cloud services under uncertainty and environmental variability.
The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions