Download Free Multi Attribute Decision Making Based On Preference Perspective With Interval Neutrosophic Sets In Venture Capital Book in PDF and EPUB Free Download. You can read online Multi Attribute Decision Making Based On Preference Perspective With Interval Neutrosophic Sets In Venture Capital and write the review.

Fuzzy information in venture capital can be well expressed by neutrosophic numbers, and TODIM method is an effective tool for multi-attribute decision-making. The distance measure is an essential step in TODIM method. The keystone of this paper is to define several new distance measures, in particular the improved interval neutrosophic Euclidean distance, and these measures are applied in the TODIM method for multi-attribute decision-making. Firstly, the normalized generalized interval neutrosophic Hausdorff distance is defined and proved to be valid in this paper. Secondly, we define a weighted parameter interval neutrosophic distance and discuss whether different weight parameters affect the decision result based on TODIM method. Thirdly, considering the preference perspective of decision-makers in behavioral economics, we define the improved interval neutrosophic Euclidean distance with the known parameter of risk preference. Finally, an application example is given to compare the effects of different parameters on the result and discuss the feasibility of these two distance measures in TODIM method.
Fuzzy information in venture capital can be well expressed by neutrosophic numbers, and TODIM method is an effective tool for multi-attribute decision-making. The distance measure is an essential step in TODIM method. The keystone of this paper is to define several new distance measures, in particular the improved interval neutrosophic Euclidean distance, and these measures are applied in the TODIM method for multi-attribute decision-making.
In this paper, a new method based on PROMETHEE and TODIM is proposed to solve the MADM problem under the single-valued neutrosophic environment. Based on the calculation formula of inflow and outflow in PROMETHEE method, and the calculation formula of overall dominance in the TODIM method, a new integrated formula is obtained.
This book introduces methods for uncertain multi-attribute decision making including uncertain multi-attribute group decision making and their applications to supply chain management, investment decision making, personnel assessment, redesigning products, maintenance services, military system efficiency evaluation. Multi-attribute decision making, also known as multi-objective decision making with finite alternatives, is an important component of modern decision science. The theory and methods of multi-attribute decision making have been extensively applied in engineering, economics, management and military contexts, such as venture capital project evaluation, facility location, bidding, development ranking of industrial sectors and so on. Over the last few decades, great attention has been paid to research on multi-attribute decision making in uncertain settings, due to the increasing complexity and uncertainty of supposedly objective aspects and the fuzziness of human thought. This book can be used as a reference guide for researchers and practitioners working in e.g. the fields of operations research, information science, management science and engineering. It can also be used as a textbook for postgraduate and senior undergraduate students.
Decision-making activities are prevalent in human life. Many methods have been developed to address real-world decision problems. In some practical situations, decision-makers prefer to provide their evaluations over a set of criteria and weights.
As an extension of neutrosophic set, interval complex neutrosophic set is a new research topic in the field of neutrosophic set theory, which can handle the uncertain, inconsistent and incomplete information in periodic data. Distance measure is an important tool to solve some problems in engineering and science. Hence, this paper presents some interval complex neutrosophic distance measures to deal with multi-criteria group decision-making problems.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.
In many real-life situations, it is often observed that the degree of indeterminacy (neutrality) plays an important role along with the satisfaction and dissatisfaction levels of the decision maker(s) (DM(s)) in any decision making process. Due to some doubt or hesitation, it may necessary for DM(s) to take opinions from experts which leads towards a set of conflicting values regarding satisfaction, indeterminacy and dis-satisfaction level of DM(s). In order to highlight the above-mentioned insight, we have developed an effective framework which reflects the reality involved in any decision-making process. In this study, a multiobjective nonlinear programming problem (MO-NLPP) has been formulated in the manufacturing system. A new algorithm, neutrosophic hesitant fuzzy programming approach (NHFPA), based on singlevalued neutrosophic hesitant fuzzy decision set has been proposed which contains the concept of indeterminacy hesitant degree along with truth and falsity hesitant degrees of different objectives. In order to show the validity and applicability of the proposed approach, a numerical example has been presented. The superiority of the proposed approach has been shown by comparing with other existing approaches. Based on the present work, conclusions and future scope have been presented.