Download Free Moving Boundary Problems Book in PDF and EPUB Free Download. You can read online Moving Boundary Problems and write the review.

Here is a wide-ranging, comprehensive account of the mathematical formulation of problems involving free boundaries as they occur in such diverse areas as hydrology, metallurgy, chemical engineering, soil science, molecular biology, materials science, and steel and glass production. Many newmethods of solution are discussed, including modern computer techniques which address multidimensional, multiphase practical problems.
This text describes several computational techniques that can be applied to a variety of problems in thermo-fluid physics, multi-phase flow, and applied mechanics involving moving flow boundaries. Step-by-step discussions of numerical procedures include multiple examples that employ algorithms in problem-solving. In addition to its survey of contemporary numerical techniques, this volume discusses formulation and computation strategies as well as applications in many fields. Researchers and professionals in aerospace, chemical, mechanical, and materials engineering will find it a valuable resource. It is also an appropriate textbook for advanced courses in fluid dynamics, computation fluid dynamics, heat transfer, and numerical methods.
We hope that the tools and ideas presented here will serve as a basis for the study of more complex phenomena and problems."--Jacket.
This textbook presents the classical topics of conduction heat transfer and extends the coverage to include chapters on perturbation methods, heat transfer in living tissue, and microscale conduction. This makes the book unique among the many published textbook on conduction heat transfer. Other noteworthy features of the book are: The material is organized to provide students with the tools to model, analyze and solve a wide range of engineering applications involving conduction heat transfer. Mathematical techniques are presented in a clear and simplified fashion to be used as instruments in obtaining solutions. The simplicity of one-dimensional conduction is used to drill students in the role of boundary conditions and to explore a variety of physical conditions that are of practical interest. Examples are carefully selected to illustrate the application of principles and the construction of solutions. Students are trained to follow a systematic problem solving methodology with emphasis on thought process, logic, reasoning and verification. Solutions to all examples and end-of-chapter problems follow an orderly problems solving approach. Extensive training material is available on the web The author provides an extensive solution manual for verifiable course instructors on request. Please send your request to [email protected]
Translations of Mathematical Monographs
This volume emphasises studies related to classical Stefan problems. The term "Stefan problem" is generally used for heat transfer problems with phase-changes such as from the liquid to the solid. Stefan problems have some characteristics that are typical of them, but certain problems arising in fields such as mathematical physics and engineering also exhibit characteristics similar to them. The term ``classical" distinguishes the formulation of these problems from their weak formulation, in which the solution need not possess classical derivatives. Under suitable assumptions, a weak solution could be as good as a classical solution. In hyperbolic Stefan problems, the characteristic features of Stefan problems are present but unlike in Stefan problems, discontinuous solutions are allowed because of the hyperbolic nature of the heat equation. The numerical solutions of inverse Stefan problems, and the analysis of direct Stefan problems are so integrated that it is difficult to discuss one without referring to the other. So no strict line of demarcation can be identified between a classical Stefan problem and other similar problems. On the other hand, including every related problem in the domain of classical Stefan problem would require several volumes for their description. A suitable compromise has to be made. The basic concepts, modelling, and analysis of the classical Stefan problems have been extensively investigated and there seems to be a need to report the results at one place. This book attempts to answer that need.
Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.
Many phenomena of interest for applications are represented by differential equations which are defined in a domain whose boundary is a priori unknown, and is accordingly named a "free boundary". A further quantitative condition is then provided in order to exclude indeterminacy. Free boundary problems thus encompass a broad spectrum which is represented in this state-of-the-art volume by a variety of contributions of researchers in mathematics and applied fields like physics, biology and material sciences. Special emphasis has been reserved for mathematical modelling and for the formulation of new problems.
Contains papers presented at the Third International Conference on Fluid Structure Interaction and the Eighth International Conference on Computational Modelling and Experimental Measurements of Free and Moving Boundary Problems.
This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.