Download Free Mountain Glaciers Of The Northern Hemisphere V1 Western Europe Soviet Union Southern Asia Latin America United States Excluding Alaska Western Canada Book in PDF and EPUB Free Download. You can read online Mountain Glaciers Of The Northern Hemisphere V1 Western Europe Soviet Union Southern Asia Latin America United States Excluding Alaska Western Canada and write the review.

Once ice-bound, difficult to access, and largely ignored by the rest of the world, the Arctic is now front and center in the midst of many important questions facing the world today. Our daily weather, what we eat, and coastal flooding are all interconnected with the future of the Arctic. The year 2012 was an astounding year for Arctic change. The summer sea ice volume smashed previous records, losing approximately 75 percent of its value since 1980 and half of its areal coverage. Multiple records were also broken when 97 percent of Greenland's surface experienced melt conditions in 2012, the largest melt extent in the satellite era. Receding ice caps in Arctic Canada are now exposing land surfaces that have been continuously ice covered for more than 40,000 years. What happens in the Arctic has far-reaching implications around the world. Loss of snow and ice exacerbates climate change and is the largest contributor to expected global sea level rise during the next century. Ten percent of the world's fish catches comes from Arctic and sub-Arctic waters. The U.S. Geological Survey estimated that up to 13 percent of the world's remaining oil reserves are in the Arctic. The geologic history of the Arctic may hold vital clues about massive volcanic eruptions and the consequent release of massive amount of coal fly ash that is thought to have caused mass extinctions in the distant past. How will these changes affect the rest of Earth? What research should we invest in to best understand this previously hidden land, manage impacts of change on Arctic communities, and cooperate with researchers from other nations? The Arctic in the Anthropocene reviews research questions previously identified by Arctic researchers, and then highlights the new questions that have emerged in the wake of and expectation of further rapid Arctic change, as well as new capabilities to address them. This report is meant to guide future directions in U.S. Arctic research so that research is targeted on critical scientific and societal questions and conducted as effectively as possible. The Arctic in the Anthropocene identifies both a disciplinary and a cross-cutting research strategy for the next 10 to 20 years, and evaluates infrastructure needs and collaboration opportunities. The climate, biology, and society in the Arctic are changing in rapid, complex, and interactive ways. Understanding the Arctic system has never been more critical; thus, Arctic research has never been more important. This report will be a resource for institutions, funders, policy makers, and students. Written in an engaging style, The Arctic in the Anthropocene paints a picture of one of the last unknown places on this planet, and communicates the excitement and importance of the discoveries and challenges that lie ahead.
Proceedings of the Symposium on Glacier Fluctuations and Climatic Change, held in Amsterdam, June 1-5, 1987
ICe in the Ocean examines sea ice and icebergs and their role in the global climate system. It is comprehensive textbook suitablefor students, pure and applied researchers, and anyone interested in the polar oceans; the distribution of sea ice; the mechanisms of growth, development and decay; the thermodynamics and dynamics of sea ice; sea ice deformation and ridge-building; the role of marginal ice zones; the characteristics of icebergs; and the part played by sea ice in the climate system and in the transport of pollutants. An extensive reference list and recommendations for further reading and numerous illustrations, and add to the usefulness of the text.
This book is a thorough introduction to climate science and global change. The author is a geologist who has spent much of his life investigating the climate of Earth from a time when it was warm and dinosaurs roamed the land, to today's changing climate. Bill Hay takes you on a journey to understand how the climate system works. He explores how humans are unintentionally conducting a grand uncontrolled experiment which is leading to unanticipated changes. We follow the twisting path of seemingly unrelated discoveries in physics, chemistry, biology, geology, and even mathematics to learn how they led to our present knowledge of how our planet works. He explains why the weather is becoming increasingly chaotic as our planet warms at a rate far faster than at any time in its geologic past. He speculates on possible future outcomes, and suggests that nature itself may make some unexpected course corrections. Although the book is written for the layman with little knowledge of science or mathematics, it includes information from many diverse fields to provide even those actively working in the field of climatology with a broader view of this developing drama. Experimenting on a Small Planet is a must read for anyone having more than a casual interest in global warming and climate change - one of the most important and challenging issues of our time.
The United States Government, cognizant of its responsibilities to future generations, has been sponsoring research for nine years into the causes, effects, and potential impacts of increased concentrations of carbon dioxide (C0 ) in the atmosphere. Agencies such as the National Science Foun 2 dation, National Oceanic and Atmospheric Administration, and the U.S. Department of Energy (DOE) cooperatively spent about $100 million from FY 1978 through FY 1984 directly on the study of CO • The DOE, as the 2 lead government agency for coordinating the government' s research ef forts, has been responsible for about 60% of these research efforts. William James succinctly defined our purpose when he stated science must be based upon " ... irreducible and stubborn facts." Scientific knowledge can and will reduce the present significant uncertainty sur rounding our understanding of the causes, effects, and potential impacts of increasing atmospheric CO2• We have come far during the past seven years in resolving some underlyinig doubts and in narrowing the ranges of disagreement. Basic concepts have become less murky. Yet, much more must be accomplished; more irreducible and stubborn facts are needed to reduce the uncertainties so that we can improve our knowledge base. Uncertainty can never be reduced to zero. However, with a much improved knowledge base, we will be able to learn, under stand, and be in a position to make decisions.
''Required reading for forest scientists.'' -Northeastern Naturalist