Download Free Motion Control Of Biomimetic Swimming Robots Book in PDF and EPUB Free Download. You can read online Motion Control Of Biomimetic Swimming Robots and write the review.

This book reports on the latest advances in the study of motion control in biomimetic swimming robots with high speed and high manoeuvrability. It presents state-of-the-art studies on various swimming robots including robotic fish, dolphins and jellyfish in a unified framework, and discusses the potential benefits of applying biomimetic underwater propulsion to autonomous underwater vehicle design, such as: speed, energy economy, enhanced manoeuvrability, and reduced detectability. Given its scope, the book will be of interest to researchers, engineers and graduate students in robotics and ocean engineering who wish to learn about the core principles, methods, algorithms, and applications of biomimetic underwater robots.
The book reveals many different aspects of motion control and a wide multiplicity of approaches to the problem as well. Despite the number of examples, however, this volume is not meant to be exhaustive: it intends to offer some original insights for all researchers who will hopefully make their experience available for a forthcoming publication on the subject.
This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.
These two volumes constitute the refereed proceedings of the First International Conference on Intelligent Robotics and Applications, ICIRA 2008, held in Wuhan, China, in October 2008. The 265 revised full papers presented were thoroughly reviewed and selected from 552 submissions; they are devoted but not limited to robot motion planning and manipulation; robot control; cognitive robotics; rehabilitation robotics; health care and artificial limb; robot learning; robot vision; human-machine interaction & coordination; mobile robotics; micro/nano mechanical systems; manufacturing automation; multi-axis surface machining; realworld applications.
This book provides a simplified description of how to design an underwater swimming robot, inspired by the mechanism of the Labriform mode of fish. This style of swimming depends on the pectoral fins only as a main locomotor for movement. A unique model with fins having a concave shape allows the highest thrust force to be achieved during the power period and the lowest drag force during the recovery period, especially if the velocity values between the powering and recovery periods are manipulated.Besides the ability to swim quickly, the proposed model was also inspired by a method of maneuvering based on the principle of differential drive for two-wheel mobile robot, achieving the minimum turning radius by controlling the speed of the rowing fins.Also, by applying the technique of the diving model used by gliders, the robot achieves underwater gliding by changing the center of the body's mass. Thus, the robot obtains the ability to dive and float in a manner similar to the Sawtooth wave.All the mentioned tasks were conducted via laboratory experiments and proven to be both effective and efficient.
The field of mechatronics integrates modern engineering science and technologies with new ways of thinking, enhancing the design of products and manufacturing processes. This synergy enables the creation and evolution of new intelligent human-oriented machines. The Handbook of Research on Advancements in Robotics and Mechatronics presents new findings, practices, technological innovations, and theoretical perspectives on the the latest advancements in the field of mechanical engineering. This book is of great use to engineers and scientists, students, researchers, and practitioners looking to develop autonomous and smart products and systems for meeting today’s challenges.
TheArti?cialLifetermappearedmorethan20yearsagoinasmallcornerofNew Mexico, USA. Since then the area has developed dramatically, many researchers joining enthusiastically and research groups sprouting everywhere. This frenetic activity led to the emergence of several strands that are now established ?elds in themselves. We are now reaching a stage that one may describe as maturer: with more rigour, more benchmarks, more results, more stringent acceptance criteria, more applications, in brief, more sound science. This, which is the n- ural path of all new areas, comes at a price, however. A certain enthusiasm, a certain adventurousness from the early years is fading and may have been lost on the way. The ?eld has become more reasonable. To counterbalance this and to encourage lively discussions, a conceptual track, where papers were judged on criteria like importance and/or novelty of the concepts proposed rather than the experimental/theoretical results, has been introduced this year. A conference on a theme as broad as Arti?cial Life is bound to be very - verse,but a few tendencies emerged. First, ?elds like ‘Robotics and Autonomous Agents’ or ‘Evolutionary Computation’ are still extremely active and keep on bringing a wealth of results to the A-Life community. Even there, however, new tendencies appear, like collective robotics, and more speci?cally self-assembling robotics, which represent now a large subsection. Second, new areas appear.
The International Conference on Engineering Research and Applications (ICERA 2022), held on December 1-2, 2022, at Thai Nguyen University of Technology in Thai Nguyen, Vietnam, provided an international forum to disseminate information on latest theories and practices in engineering research and applications. The conference focused on original research work in areas including mechanical engineering, materials and mechanics of materials, mechatronics and micro mechatronics, automotive engineering, electrical and electronics engineering, information and communication technology. By disseminating the latest advances in the field, the Proceedings of ICERA 2022, Advances in Engineering Research and Application, assists academics and professionals alike to reshape their thinking on sustainable development.
Biomimetics is an innovative paradigm shift based on biodiversity for sustainability. Biodiversity is not only the result of evolutionary adaption but also the optimized solution of an epic combinatorial chemistry for sustainability, because the diversity has been acquired by biological processes and technology, including production processes, operating principles, and control systems, all of which differ from human technology. In the recent decades, biomimetics has gained a great deal of industrial interest because of its unique solutions for engineering problems. In this book, researchers have contributed cutting-edge results from the viewpoint of two types of industrial applications of biomimetics. The first type starts with engineering tasks to solve an engineering problem using biomimetics, while the other starts with the knowledge of biology and its application to engineering fields. This book discusses both approaches. Edited by Profs. Masatsugu Shimomura and Akihiro Miyauchi, two prominent nanotechnology researchers, this book will appeal to advanced undergraduate- and graduate-level students of biology, chemistry, physics, and engineering and to researchers working in the areas of mechanics, optical devices, glue materials, sensor devices, and SEM observation of living matter.