Download Free Monte Carlo Simulations For The Liquid Vapor Phase Equilibrium Of Fluids Book in PDF and EPUB Free Download. You can read online Monte Carlo Simulations For The Liquid Vapor Phase Equilibrium Of Fluids and write the review.

Molecular simulation allows researchers unique insight into the structures and interactions at play in fluids. Since publication of the first edition of Molecular Simulation of Fluids, novel developments in theory, algorithms and computer hardware have generated enormous growth in simulation capabilities. This 2nd edition has been fully updated and expanded to highlight this recent progress, encompassing both Monte Carlo and molecular dynamic techniques, and providing details of theory, algorithms and both serial and parallel implementations. Beginning with a clear introduction and review of theoretical foundations, the book goes on to explore intermolecular potentials before discussing the calculation of molecular interactions in more detail. Monte Carlo simulation and integrators for molecular dynamics are then discussed further, followed by non-equilibrium molecular dynamics and molecular simulation of ensembles and phase equilibria. The use of object-orientation is examined in detail, with working examples coded in C++. Finally, practical parallel simulation algorithms are discussed using both MPI and GPUs, with the latter coded in CUDA. Drawing on the extensive experience of its expert author, Molecular Simulation of Fluids: Theory, Algorithms, Object-Orientation, and Parallel Computing 2nd Edition is a practical, accessible guide to this complex topic for all those currently using, or interested in using, molecular simulation to study fluids. - Fully updated and revised to reflect advances in the field, including new chapters on intermolecular potentials and parallel algorithms - Covers the application of both MPI and GPU programming to molecular simulation - Covers a wide range of simulation topics using both Monte Carlo and molecular dynamics approaches - Provides access to downloadable simulation code, including GPU code using CUDA, to encourage practice and support learning
Provides hands-on knowledge enabling students of and researchers in chemistry, biology, and engineering to perform molecular simulations This book introduces the fundamentals of molecular simulations for a broad, practice-oriented audience and presents a thorough overview of the underlying concepts. It covers classical mechanics for many-molecule systems as well as force-field models in classical molecular dynamics; introduces probability concepts and statistical mechanics; and analyzes numerous simulation methods, techniques, and applications. Molecular Simulations: Fundamentals and Practice starts by covering Newton's equations, which form the basis of classical mechanics, then continues on to force-field methods for modelling potential energy surfaces. It gives an account of probability concepts before subsequently introducing readers to statistical and quantum mechanics. In addition to Monte-Carlo methods, which are based on random sampling, the core of the book covers molecular dynamics simulations in detail and shows how to derive critical physical parameters. It finishes by presenting advanced techniques, and gives invaluable advice on how to set up simulations for a diverse range of applications. -Addresses the current need of students of and researchers in chemistry, biology, and engineering to understand and perform their own molecular simulations -Covers the nitty-gritty ? from Newton's equations and classical mechanics over force-field methods, potential energy surfaces, and probability concepts to statistical and quantum mechanics -Introduces physical, chemical, and mathematical background knowledge in direct relation with simulation practice -Highlights deterministic approaches and random sampling (eg: molecular dynamics versus Monte-Carlo methods) -Contains advanced techniques and practical advice for setting up different simulations to prepare readers entering this exciting field Molecular Simulations: Fundamentals and Practice is an excellent book benefitting chemist, biologists, engineers as well as materials scientists and those involved in biotechnology.
This book, Perturbation Theories for the Thermodynamic Properties of Fluids and Solids, provides a comprehensive review of current perturbation theories—as well as integral equation theories and density functional theories—for the equilibrium thermodynamic and structural properties of classical systems. Emphasizing practical applications, the text avoids complex theoretical derivations as much as possible. It begins with discussions of the nature of intermolecular forces and simple potential models. The book also presents a summary of statistical mechanics concepts and formulae. In addition, it reviews simulation techniques, providing background for the performance analyses of theories executed throughout the text using simulation data. Chapters describe integral equation theories, theoretical approaches for hard-sphere fluid or solid systems, and perturbation theories for simple fluids and solids for monocomponent and multicomponent systems. They also cover density functional theories for inhomogeneous systems and perturbative and nonperturbative approaches to describe the structure and thermodynamics of hard-body molecular fluids. The final chapter examines several more challenging systems, such as fluids near the critical point, liquid metals, molten salts, colloids, and aqueous protein solutions. This book offers a thorough account of the available equilibrium theories for the thermodynamic and structural properties of fluids and solids, with special focus on perturbation theories, emphasizing their applications, strengths, and weaknesses. Appropriate for experienced researchers as well as postgraduate students, the text presents a wide-ranging yet detailed view and provides a useful guide to the application of the theories described.
First published in 2004. Routledge is an imprint of Taylor & Francis, an informa company.
Molecular modeling (MM) tools offer significant benefits in the design of industrial chemical plants and material processing operations. While the role of MM in biological fields is well established, in most cases MM works as an accessory in novel products/materials development rather than a tool for direct innovation. As a result, MM engineers and practitioners are often seized with the question: "How do I leverage these tools to develop novel materials or chemicals in my industry?" Molecular Modeling for the Design of Novel Performance Chemicals and Materials answers this important question via a simple and practical approach to the MM paradigm. Using case studies, it highlights the importance and usability of MM tools and techniques in various industrial applications. The book presents detailed case studies demonstrating diverse applications such as mineral processing, pharmaceuticals, ceramics, energy storage, electronic materials, paints, coatings, agrochemicals, and personal care. The book is divided into themed chapters covering a diverse range of industrial case studies, from pharmaceuticals to cement. While not going too in-depth into fundamental aspects, the book covers almost all paradigms of MM, and references are provided for further learning. The text includes more than 100 color illustrations of molecular models.
High pressures play a more and more important role in modern technology. Examples are the supercritical fluid extraction of medical drugs and dyes from biological material, the handling of compressed or liquefied gases (including natural gas or hydrogen), the operation of modern thermal power plants, or various technical processes for controlled particle formation. High-Pressure Fluid Phase Equilibria, Second Edition enables understanding of the complicated phase behaviour that fluid or fluid mixtures (liquids, gases, or supercritical phases) can exhibit at elevated pressures. The underlying thermodynamic equations are explained, and robust algorithms for the computation of such equilibria (including solid–fluid equilibria) are proposed. Since the publication of the first edition of this book there have been many new developments, for instance differential equation methods for the computation of phase equilibria, accurate numerical differentiation, high-precision equations of state (e.g., the GERG model). Moreover, more detail and explanation has been added on important topics that were only briefly examined in the original book to better assist the reader, such as expansion processes and chemical reactions). The book remains invaluable as a single resource for grasping the intricacies of fluid phase behaviour. It enables readers to write or improve their own computer programs for the calculation of phase equilibria. It will appeal to graduate students of chemical engineering and university research staff involved in chemical engineering of supercritical fluids or the physical chemistry of fluids; the book can also serve as the basis of lectures or advanced students' seminars. - Comprehensively presents the complex world of phase equilibria (binary and ternary) and the various methods for computing phase equilibria, whilst carefully considering the relevant pressure and temperature ranges - Introduces phase diagram classes, how to recognize them, and how to identify their characteristic features - Presents rational nomenclature of binary fluid phase diagrams - Includes problems and solutions for self-testing, exercises, or seminarsNew to this Edition: - Presentation of the phase equilibria models is extended and expanded - There are now more descriptions on more equations of state, especially the PCSAFT EoS - Features new chapter on nonisothermal applications and chemically reactive systems and extensive updates and additions to all existing chapters
In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: "Variational" QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman
Molecular simulation is an emerging technology for determining the properties of many systems that are of interest to the oil and gas industry, and more generally to the chemical industry. Based on a universally accepted theoretical background, molecular simulation accounts for the precise structure of molecules in evaluating their interactions. Taking advantage of the availability of powerful computers at moderate cost, molecular simulation is now providing reliable predictions in many cases where classical methods (such as equations of state or group contribution methods) have limited prediction capabilities. This is particularly useful for designing processes involving toxic components, extreme pressure conditions, or adsorption selectivity in microporous adsorbents. Molecular simulation moreover provides a detailed understanding of system behaviour. As illustrated by their award from the American Institute of Chemical Engineers for the best overall performance at the Fluid Simulation Challenge 2004, the authors are recognized experts in Monte Carlo simulation techniques, which they use to address equilibrium properties. This book presents these techniques in sufficient detail for readers to understand how simulation works, and describes many applications for industrially relevant problems. The book is primarily dedicated to chemical engineers who are not yet conversant with molecular simulation techniques. In addition, specialists in molecular simulation will be interested in the large scope of applications presented (including fluid properties, fluid phase equilibria, adsorption in zeolites, etc.).Contents: 1. Introduction. 2. Basics of Molecular Simulation. 3. Fluid Phase Equilibria and Fluid Properties. 4. Adsorption. 5. Conclusion and Perspectives. Appendix
The unique behavior of the "liquid state", together with the richness of phenomena that are observed, render liquids particularly interesting for the scientific community. Note that the most important reactions in chemical and biological systems take place in solutions and liquid-like environments. Additionally, liquids are utilized for numerous industrial applications. It is for these reasons that the understanding of their properties at the molecular level is of foremost interest in many fields of science and engineering. What can be said with certainty is that both the experimental and theoretical studies of the liquid state have a long and rich history, so that one might suppose this to be essentially a solved problem. It should be emphasized, however, that although, for more than a century, the overall scientific effort has led to a considerable progress, our understanding of the properties of the liquid systems is still incomplete and there is still more to be explored. Basic reason for this is the "many body" character of the particle interactions in liquids and the lack of long-range order, which introduce in liquid state theory and existing simulation techniques a number of conceptual and technical problems that require specific approaches. Also, many of the elementary processes that take place in liquids, including molecular translational, rotational and vibrational motions (Trans. -Rot. -Vib. coupling), structural relaxation, energy dissipation and especially chemical changes in reactive systems occur at different and/or extremely short timescales.
With the rapid development of fast processors, the power of a mini-super computer now exists in a lap-top box. Quite sophisticated techniques are be coming accessible to geoscientists, thus making disciplinary boundaries fade. Chemists and physicists are no longer shying away from computational mineral ogical and material science problems "too complicated to handle." Geoscientists are willing to delve into quantitative physico-chemical methods and open those "black boxes" they had shunned for several decades but with which had learned to live. I am proud to present yet another volume in this series which is designed to break the disciplinary boundaries and bring the geoscientists closer to their chemist and physicist colleagues in achieving a common goal. This volume is the result of an international collaboration among many physical geochemists (chemists, physicists, and geologists) aiming to understand the nature of material. The book has one common theme: namely, how to determine quantitatively through theory the physico-chemical parameters of the state of a solid or fluid.