Download Free Monte Carlo Calculations Of Light Intensity In Environments With Participating Ambient Media Book in PDF and EPUB Free Download. You can read online Monte Carlo Calculations Of Light Intensity In Environments With Participating Ambient Media and write the review.

The scattering of visible light by clouds is calculated from an efficient Monte Carlo code which follows the multiply scattered path of the photon. The single scattering phase function is obtained from the Mie theory by integration over a particle size distribution. The photons are followed through a sufficient number of collisions and reflections from the lower surface (which may have any desired albedo) until they make a negligible contribution to the intensity. Various variance reduction techniques were used to improve the statistics. The reflected and transmitted intensity is studied as a function of solar zenith angle, optical thickness, and surface albedo. The downward flux, cloud albedo, and mean optical path of the transmitted and reflected photons are given as a function of these same parameters. The numerous small angle scatterings of the photon in the direction of the incident beam are followed accurately and produce a greater penetration into the cloud than is obtained with a more isotropic and less realistic phase function. (Author).
This thesis presents methods for photorealistic rendering of virtual objects so that they can be seamlessly composited into images of the real world. To generate predictable and consistent results, we study physically based methods, which simulate how light propagates in a mathematical model of the augmented scene. This computationally challenging problem demands both efficient and accurate simulation of the light transport in the scene, as well as detailed modeling of the geometries, illumination conditions, and material properties. In this thesis, we discuss and formulate the challenges inherent in these steps and present several methods to make the process more efficient. In particular, the material contained in this thesis addresses four closely related areas: HDR imaging, IBL, reflectance modeling, and efficient rendering. The thesis presents a new, statistically motivated algorithm for HDR reconstruction from raw camera data combining demosaicing, denoising, and HDR fusion in a single processing operation. The thesis also presents practical and robust methods for rendering with spatially and temporally varying illumination conditions captured using omnidirectional HDR video. Furthermore, two new parametric BRDF models are proposed for surfaces exhibiting wide angle gloss. Finally, the thesis also presents a physically based light transport algorithm based on Markov Chain Monte Carlo methods that allows approximations to be used in place of exact quantities, while still converging to the exact result. As illustrated in the thesis, the proposed algorithm enables efficient rendering of scenes with glossy transfer and heterogenous participating media.
Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.
Since the early 1970s, experts have recognized that petroleum pollutants were being discharged in marine waters worldwide, from oil spills, vessel operations, and land-based sources. Public attention to oil spills has forced improvements. Still, a considerable amount of oil is discharged yearly into sensitive coastal environments. Oil in the Sea provides the best available estimate of oil pollutant discharge into marine waters, including an evaluation of the methods for assessing petroleum load and a discussion about the concerns these loads represent. Featuring close-up looks at the Exxon Valdez spill and other notable events, the book identifies important research questions and makes recommendations for better analysis ofâ€"and more effective measures againstâ€"pollutant discharge. The book discusses: Inputâ€"where the discharges come from, including the role of two-stroke engines used on recreational craft. Behavior or fateâ€"how oil is affected by processes such as evaporation as it moves through the marine environment. Effectsâ€"what we know about the effects of petroleum hydrocarbons on marine organisms and ecosystems. Providing a needed update on a problem of international importance, this book will be of interest to energy policy makers, industry officials and managers, engineers and researchers, and advocates for the marine environment.
Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.