Download Free Montana Math Book in PDF and EPUB Free Download. You can read online Montana Math and write the review.

This title has been removed from sale by Penguin Group, USA.
Mathematics teacher education has a critical role to play in preparing teachers to put at center stage goals to support equity in mathematics education and to diversify student interest and participation in mathematics. These goals must also resonate with broader public interest goals to improve educational and social conditions both in the U.S. and abroad. The Mathematics Teacher Education in the Public Interest book aims to support mathematics teacher educators to prepare teachers with new knowledge and skills to support all students to learn mathematics and to become informed, engaged, and critical citizens within their community, nation, and world. While internationally there is considerable interest among mathematics educators in issues of equity and social justice, the literature on mathematics teacher education for equity and social justice thus far has been very limited.The book provides theoretical discussions on the need for equity and social justice emphases in mathematics teacher education, as well as practical examples from mathematics teacher educators, documenting their own professional efforts to center practices on equity and social justice. Section emphases include critical perspectives on mathematics teacher education, the use of equity and social justice-themed activities in mathematics teacher preparation courses, and issues of identity and community and cultural contexts in mathematics teacher education. In addition syntheses of major ideas of the book are offered by experienced researchers.
The Mathematics Enthusiast (TME) is an eclectic internationally circulated peer reviewed journal which focuses on mathematics content, mathematics education research, innovation, interdisciplinary issues and pedagogy. The journal exists as an independent entity. It is published on a print?on?demand basis by Information Age Publishing and the electronic version is hosted by the Department of Mathematical Sciences? University of Montana. The journal is not affiliated to nor subsidized by any professional organizations but supports PMENA [Psychology of Mathematics Education? North America] through special issues on various research topics.
The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.
The name of Zoltan P. Dienes (1916-) stands with those of Jean Piaget and Jerome Bruner as a legendary figure whose theories of learning have left a lasting impression on the field of mathematics education. Dienes' name is synonymous with the Multi-base blocks (also known as Dienes blocks) which he invented for the teaching of place value. He also is the inventor of Algebraic materials and logic blocks, which sowed the seeds of contemporary uses of manipulative materials in mathematics instruction. Dienes' place is unique in the field of mathematics education because of his theories on how mathematical structures can be taught from the early grades onwards using multiple embodiments through manipulatives, games, stories and dance. Dienes' notion of embodied knowledge presaged other cognitive scientists who eventually came to recognize the importance of embodied knowledge and situated cognition - where knowledge and abilities are organized around experience as much as they are organized around abstractions. Dienes was an early pioneer in what was later to be called sociocultural perspectives and democratization of learning. This monograph compiled and edited by Bharath Sriraman honors the seminal contributions of Dienes to mathematics education and includes several recent unpublished articles written by Dienes himself. These articles exemplify his principles of guided discovery learning and reveal the non-trivial mathematical structures that can be made accessible to any student. The monograph also includes a rare interview with Dienes in which he reflects on his life, his work, the role of context, language and technology in mathematics teaching and learning today. The book finds an important place in any mathematics education library and is vital reading for mathematics education researchers, cognitive scientists, prospective teachers, graduate students and teachers of mathematics.
She Does Math! presents the career histories of 38 professional women and math problems written by them. Each history describes how much math the [Author]; took in high school and college; how she chose her field of study; and how she ended up in her current job. Each of the women present several problems typical of those she had to solve on the job using mathematics. There are many good reasons to buy this book: It contains real-life problems. Any student who asks the question, "Why do I have to learn algebra or trigonometry or geometry?" will find many answers in its pages. Students will welcome seeing solutions from real-world jobs where the math skills they are learning in class are actually used. The book provides strong female role models and supplies practical information about the job market. Students learn that they can only compete for these interesting, well-paying jobs by taking mathematics throughout their high school and college years. The book demonstrates the surprising variety of fields in which mathematics is used. Who should have this book? Your daughter or granddaughter, your sister, your former math teacher, your students--and young men, too. They want to know how the math they study is applied--and this book will show them.
This new book contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. It is the first single volume devoted to applications of Clifford analysis to other aspects of analysis. All chapters are written by world authorities in the area. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much, much more! Clifford Algebras in Analysis and Related Topics also contains the most comprehensive section on open problems available. The book presents the most detailed link between Clifford analysis and classical harmonic analysis. It is a refreshing break from the many expensive and lengthy volumes currently found on the subject.
Here is an elementary development of the Sinc-Galerkin method with the focal point being ordinary and partial differential equations. This is the first book to explain this powerful computational method for treating differential equations. These methods are an alternative to finite difference and finite element schemes, and are especially adaptable to problems with singular solutions. The text is written to facilitate easy implementation of the theory into operating numerical code. The authors' use of differential equations as a backdrop for the presentation of the material allows them to present a number of the applications of the sinc method. Many of these applications are useful in numerical processes of interest quite independent of differential equations. Specifically, numerical interpolation and quadrature, while fundamental to the Galerkin development, are useful in their own right.
Beliefs and Mathematics is a Festschrift honoring the contributions of Günter Törner to mathematics education and mathematics. Mathematics Education as a legitimate area of research emerged from the initiatives of well known mathematicians of the last century such as Felix Klein and Hans Freudenthal. Today there is an increasing schism between researchers in mathematics education and those in mathematics as evidenced in the Math wars in the U.S and other parts of the world. Günter Törner represents an international voice of reason, well respected and known in both groups, one who has successfully bridged and worked in both domains for three decades. His contributions in the domain of beliefs theory are well known and acknowledged. The articles in this book are written by many prominent researchers in the area of mathematics education, several of whom are editors of leading journals in the field and have been at the helm of cutting edge advances in research and practice. The contents cover a wide spectrum of research, teaching and learning issues that are relevant for anyone interested in mathematics education and its multifaceted nature of research. The book as a whole also conveys the beauty and relevance of mathematics in societies around the world. It is a must read for anyone interested in mathematics education.
Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its value in the mathematical community. The writing is expository, not technical, and should be accessible and informative to a diverse audience. The primary readership includes all those in departments of mathematical sciences in two or four year colleges and universities, and their administrators, as well as graduate students. Researchers in education may also find topics of interest. Other potential readers include those doing work in mathematics education in schools of education, and teachers of secondary or middle school mathematics as well as those involved in their professional development.