Download Free Monotone Dynamical Systems An Introduction To The Theory Of Competitive And Cooperative Systems Book in PDF and EPUB Free Download. You can read online Monotone Dynamical Systems An Introduction To The Theory Of Competitive And Cooperative Systems and write the review.

This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.
Creating some links between control feedback and biology modeling communities based on similarities in modeling, observing and perceiving alive structures, and analyzing interconnections between biological structures and subsystems was the main objective of this volume. In this context, biology systems need appropriate analysis tools due to their structure and hierarchy, complexity and environment interference, and we believe that these aspects may generate interesting research topics in control area. Indeed, several works, raising the potential impact of control developments to bring some beginning of answers in the context of biological systems, have been published in the recent years. The idea of this book was conceived in the context mentioned above with the objective to help in claiming many of the problems for control researchers, starting discussions and opening interactive debates between the control and biology communities, and, finally, to alert graduate students to the many interesting ideas at the frontier between control feedback theory and biology.
This volume contains the proceedings of Analysis and Design of Hybrid Systems 2006: the 2nd IFAC Conference on Analysis and Design of Hybrid Systems, organized in Alghero (Italy) on June 7-9, 2006. ADHS is a series of triennial meetings that aims to bring together researchers and practitioners with a background in control and computer science to provide a survey of the advances in the field of hybrid systems, and of their ability to take up the challenge of analysis, design and verification of efficient and reliable control systems. ADHS'06 is the second Conference of this series after ADHS'03 in Saint Malo. - 65 papers selected through careful reviewing process - Plenary lectures presented by three distinguished speakers - Featuring interesting new research topics
This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Problems for Non-Autonomous Differential Equations," held in Cetraro, Italy, June 19-25 2011. Anna Capietto and Jean Mawhin lectured on nonlinear boundary value problems; they applied the Maslov index and degree-theoretic methods in this context. Rafael Ortega discussed the theory of twist maps with nonperiodic phase and presented applications. Peter Kloeden and Sylvia Novo showed how dynamical methods can be used to study the stability/bifurcation properties of bounded solutions and of attracting sets for nonautonomous differential and functional-differential equations. The volume will be of interest to all researchers working in these and related fields.
This work presents the proceedings from the International Conference on Differential Equations and Control Theory, held recently in Wuhan, China. It provides an overview of current developments in a range of topics including dynamical systems, optimal control theory, stochastic control, chaos, fractals, wavelets and ordinary, partial, functional and stochastic differential equations.
This edited book contains selected papers presented at the Louisiana Conference on Mathematical Control Theory (MCT'03), which brought together over 35 prominent world experts in mathematical control theory and its applications. The book forms a well-integrated exploration of those areas of mathematical control theory in which nonsmooth analysis is having a major impact. These include necessary and sufficient conditions in optimal control, Lyapunov characterizations of stability, input-to-state stability, the construction of feedback mechanisms, viscosity solutions of Hamilton-Jacobi equations, invariance, approximation theory, impulsive systems, computational issues for nonlinear systems, and other topics of interest to mathematicians and control engineers. The book has a strong interdisciplinary component and was designed to facilitate the interaction between leading mathematical experts in nonsmooth analysis and engineers who are increasingly using nonsmooth analytic tools.
Partial differential equations (PDEs) have been used in theoretical ecology research for more than eighty years. Nowadays, along with a variety of different mathematical techniques, they remain as an efficient, widely used modelling framework; as a matter of fact, the range of PDE applications has even become broader. This volume presents a collection of case studies where applications range from bacterial systems to population dynamics of human riots.
To describe the true behavior of most real-world systems with sufficient accuracy, engineers have to overcome difficulties arising from their lack of knowledge about certain parts of a process or from the impossibility of characterizing it with absolute certainty. Depending on the application at hand, uncertainties in modeling and measurements can be represented in different ways. For example, bounded uncertainties can be described by intervals, affine forms or general polynomial enclosures such as Taylor models, whereas stochastic uncertainties can be characterized in the form of a distribution described, for example, by the mean value, the standard deviation and higher-order moments. The goal of this Special Volume on Modeling, Design, and Simulation of Systems with Uncertainties is to cover modern methods for dealing with the challenges presented by imprecise or unavailable information. All contributions tackle the topic from the point of view of control, state and parameter estimation, optimization and simulation. Thematically, this volume can be divided into two parts. In the first we present works highlighting the theoretic background and current research on algorithmic approaches in the field of uncertainty handling, together with their reliable software implementation. The second part is concerned with real-life application scenarios from various areas including but not limited to mechatronics, robotics, and biomedical engineering.
This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, AND THEORY METHODS is based on the proceedings of a successful one week workshop. The pro ceedings of the two-day tutorial which preceded the workshop "Introduction to Epidemiology and Immunology" appears as IMA Volume 125: Math ematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. The tutorial and the workshop are integral parts of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BI OLOGY. " I would like to thank Carlos Castillo-Chavez (Director of the Math ematical and Theoretical Biology Institute and a member of the Depart ments of Biometrics, Statistics and Theoretical and Applied Mechanics, Cornell University), Sally M. Blower (Biomathematics, UCLA School of Medicine), Pauline van den Driessche (Mathematics and Statistics, Uni versity of Victoria), and Denise Kirschner (Microbiology and Immunology, University of Michigan Medical School) for their superb roles as organizers of the meetings and editors of the proceedings. Carlos Castillo-Chavez, es pecially, made a major contribution by spearheading the editing process. I am also grateful to Kenneth L. Cooke (Mathematics, Pomona College), for being one of the workshop organizers and to Abdul-Aziz Yakubu (Mathe matics, Howard University) for serving as co-editor of the proceedings. I thank Simon A. Levin (Ecology and Evolutionary Biology, Princeton Uni versity) for providing an introduction.
This book presents high-quality original contributions on positive systems, including topics such as: monotone dynamical systems in mathematical biology and game theory; mathematical developments for networked systems in biology, chemistry and the social sciences; linear and nonlinear positive operators; dynamical analysis, observation and control of positive distributed parameter systems; stochastic realization theory; biological systems with positive variables and positive controls; iterated function systems; nonnegative dynamic processes; and dimensioning problems for collaborative systems. The book comprises a selection of the best papers presented at the POSTA 2016, the 5th International Symposium on Positive Systems, which was held in Rome, Italy, in September 2016. This conference series represents a targeted response to the growing need for research that reports on and critically discusses a wide range of topics concerning the theory and applications of positive systems.