Download Free Moment Maps Cobordisms And Hamiltonian Group Actions Book in PDF and EPUB Free Download. You can read online Moment Maps Cobordisms And Hamiltonian Group Actions and write the review.

During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.
This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry.
This monograph, which grew out of a series of lectures delivered by Stephen Wiggins at the Fields Institute in early 1993, is concerned with the geometrical viewpoint of the global dynamics of nonlinear dynamical systems. With appropriate examples and concise explanations, Wiggins unites many different topics into one volume and makes a unique contribution to the field. Engineers, physicists, chemists, and mathematicians who work on issues related to the global dynamics of nonlinear dynamical systems will find these lectures very useful.
In this paper the author classifies symplectic actions of $2$-tori on compact connected symplectic $4$-manifolds, up to equivariant symplectomorphisms. This extends results of Atiyah, Guillemin-Sternberg, Delzant and Benoist. The classification is in terms of a collection of invariants of the topology of the manifold, of the torus action and of the symplectic form. The author constructs explicit models of such symplectic manifolds with torus actions, defined in terms of these invariants.
A study of ergodic, measure preserving actions of countable discrete groups on standard probability spaces. It explores a direction that emphasizes a global point of view, concentrating on the structure of the space of measure preserving actions of a given group and its associated cocycle spaces.
This research monograph presents results in a rapidly developing area of great contemporary interest. Guillemin, Ginzburg, and Karshon show that the underlying topological thread in the computation of invariants of G-manifolds is a consequence of a linearization theorem involving equivariant cobordisms. The book incorporates a novel approach and showcases progressive research. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an abstract moment map'.
This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to important connections with classical and modern areas of symplectic, Lagrangian, and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and polyhedral products provides for a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate subject of homotopy theory. A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. This book includes many open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter this beautiful new area.
This volume, in honor of Yakov Eliashberg, gives a panorama of some of the most fascinating recent developments in symplectic, contact and gauge theories. It contains research papers aimed at experts, as well as a series of skillfully written surveys accessible for a broad geometrically oriented readership from the graduate level onwards. This collection will serve as an enduring source of information and ideas for those who want to enter this exciting area as well as for experts.
In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics
Now back in print by the AMS, this is a significantly revised edition of a book originally published in 1987 by Academic Press. This book gives the reader an introduction to the theory of algebraic representations of reductive algebraic groups. To develop appropriate techniques, the first part of the book is an introduction to the general theory of representations of algebraic group schemes. Here, the author describes important basic notions: induction functors, cohomology,quotients, Frobenius kernels, and reduction mod $p$, among others. The second part of the book is devoted to the representation theory of reductive algebraic groups. It includes topics such as the description of simple modules, vanishing theorems, the Borel-Bott-Weil theorem and Weyl's character formula, andSchubert schemes and line bundles on them. For this revised edition the author added nearly 150 pages of new material describing some later developments, among them Schur algebras, Lusztig's conjecture and Kazhdan-Lusztig polynomials, tilting modules, and representations of quantum groups. He also made major revisions to parts of the old text. Jantzen's book continues to be the ultimate source of information on representations of algebraic groups in finite characteristics. It is suitable forgraduate students and research mathematicians interested in algebraic groups and their representations.