Download Free Moment Maps And Combinatorial Invariants Of Hamiltonian Tn Spaces Book in PDF and EPUB Free Download. You can read online Moment Maps And Combinatorial Invariants Of Hamiltonian Tn Spaces and write the review.

The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
"Based on the proceedings of the Special Session on Geometry and Physics held over a six month period at the University of Aarhus, Denmark and on articles from the Summer school held at Odense University, Denmark. Offers new contributions on a host of topics that involve physics, geometry, and topology. Written by more than 50 leading international experts."
Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the fieldare provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry.This volume is the proceedings of the International Conference on Toric Topology held in Osaka in May-June 2006. It contains about 25 research and survey articles written by conference speakers, covering many different aspects of, and approaches to, torus actions, such as those mentioned above. Some of the manuscripts are survey articles, intended to give a broad overview of an aspect of the subject; all manuscripts consciously aim to be accessible to a broad reading audience of students andresearchers interested in the interaction of the subjects involved. We hope that this volume serves as an enticing invitation to this emerging field.
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Written by recognized experts, this edited book covers recent theoretical, experimental and applied issues in the growing fi eld of Complex Systems and Nonlinear Dynamics. It is divided into two parts, with the first section application based, incorporating the theory of bifurcation analysis, numerical computations of instabilities in dynamical systems and discussing experimental developments. The second part covers the broad category of statistical mechanics and dynamical systems. Several novel exciting theoretical and mathematical insights and their consequences are conveyed to the reader.
The articles in this volume are the outcome of the Impanga Conference on Algebraic Geometry in 2010 at the Banach Center in Bedlewo. The following spectrum of topics is covered: K3 surfaces and Enriques surfaces Prym varieties and their moduli invariants of singularities in birational geometry differential forms on singular spaces Minimal Model Program linear systems toric varieties Seshadri and packing constants equivariant cohomology Thom polynomials arithmetic questions The main purpose of the volume is to give comprehensive introductions to the above topics, starting from an elementary level and ending with a discussion of current research. The first four topics are represented by the notes from the mini courses held during the conference. In the articles, the reader will find classical results and methods, as well as modern ones. This book is addressed to researchers and graduate students in algebraic geometry, singularity theory, and algebraic topology. Most of the material in this volume has not yet appeared in book form.
In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics