Download Free Molecularly Imprinted Polymers In Biotechnology Book in PDF and EPUB Free Download. You can read online Molecularly Imprinted Polymers In Biotechnology and write the review.

Controlled radical polymerization techniques for molecular imprinting, by Mark E. Byrne From bulk polymers to nanoparticles, by Lei Ye Post-imprinting and in-cavity functionalization, by Toshifumi Takeuchi Characterization of MIPs (affinity, selectivity, site heterogeneity...), by Richard Ansell Theoretical aspects and computer modelling, by Ian Nicholls MIPs in aqueous environments, by Bin Lu MIPs for binding macromolecules, by Kenneth J. Shea Solid phase extraction, by Ecevit Yilmaz Sensors, by Sergey A. Piletsky MIPs for catalysis and synthesis, by Marina Resmini Wastewater treatment, by Bo Mattiasson MIPs as tools for bioassays, biotransformation and drug delivery, by Meiping Zhao
Molecularly Imprinted Catalysts: Principle, Synthesis, and Applications is the first book of its kind to provide an in-depth overview of molecularly imprinted catalysts and selective catalysis, including technical details, principles of selective catalysis, preparation processes, the catalytically active polymers themselves, and important progress made in this field. It serves as an important reference for scientists, students, and researchers who are working in the areas of molecular imprinting, catalysis, molecular recognition, materials science, biotechnology, and nanotechnology.Comprising a diverse group of experts from prestigious universities and industries across the world, the contributors to this book provide access to the latest knowledge and eye-catching achievements in the field, and an understanding of what progress has been made and to what extent it is being advanced in industry. - The first book in the field on molecularly imprinted catalysts (MIPs) - Provides a systematic background to selective catalysis, especially the basic concepts and key principles of the different MIP-based catalysts - Features state-of-the art presentation of preparation methods and applications of MIPs - Written by scientists from prestigious universities and industries across the world, and edited by veteran researchers in molecular imprinting and selective catalysis
A summary of the latest developments and applications of molecular imprinting for selective chemical sensing.
Molecular imprinting is one of the most efficient methods to fabricate functional polymer structures with pre-defined molecular recognition selectivity. Molecularly imprinted polymers (MIPs) have been used as antibody and enzyme mimics in a large number of applications. The outstanding stability and straightforward preparation make MIPs ideal substitutes for biologically derived molecular recognition materials, especially for development of affinity separation systems, chemical sensors and high selectivity catalysts. New MIP materials are being increasingly applied to solve challenging problems in environmental sciences, food safety control, biotechnology and medical diagnostics. Development in molecular imprinting research over the past decade has enabled tailor-designed molecular recognition sites to be created in synthetic materials with physical dimensions in the micro- and nano-regime. The new breakthroughs in MIP synthesis/fabrication have brought in many unprecedented functions of the micro- and nano-structured polymers. The aim of this review volume is to introduce to the readers the new developments in molecularly imprinted micro- and nano-structures, and the new applications that have been made possible with the new generation of imprinted materials.
Molecular imprinting is a rapidly growing field with wide-ranging applications, especially in the area of sensor development, where the process leads to improved sensitivity, reliability, stability, and reproducibility in sensing materials. Molecularly Imprinted Sensors in Analytical Chemistry addresses the most recent advances and challenges relating to molecularly imprinted polymer sensors, and is the only book to compile this information in a single source. From fundamentals to applications, this material will be valuable to researchers working in sensing technologies for pharmaceutical separation and chemical analysis, environmental monitoring and protection, defense and security, and healthcare. Provides a systematic introduction to the different types of MIP-based sensors and reviews the basic principles behind each type of sensor Includes state-of-the-art methodology supported by comparisons and discussions from leading experts in the field Covers all types of sensing modes (optical, electrochemical, thermal, acoustic, etc.), materials and platforms Appeals to a multidisciplinary audience of scientists and graduate students in a wide variety of fields, including chemistry, biology, biomedical science and engineering, and materials science and engineering
Written by pioneering experts in the field, this book offers a wide range of approaches for molecular imprinting, experimental protocols that exemplify specific techniques, and a detailed survey on molecular imprinting research and applications. It supplies a comprehensive tutorial for learning basic techniques and making new contributions to the field, as well as in-depth discussions, guidelines, and experimental protocols to help beginners gain a jump-start in the field of molecular imprinting. Molecularly Imprinted Materials: Science and Technology contains a multitude of experimental protocols illustrating specific techniques discussed in the text.
Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications. - Comprehensively covers all major medical applications of biosynthetic polymers - Provides an overview of non-degradable and biodegradable biosynthetic polymers and their medical uses - Presents a specific focus on coatings and surface modifications, biosynthetic hydrogels, particulate systems for gene and drug delivery, and conjugated conducting polymers
Smart materials stimulated by chemical or biological signals are of interest for their many applications including drug delivery, as well as in new sensors and actuators for environmental monitoring, process and food control, and medicine. In contrast to other books on responsive materials, this volume concentrates on materials which are stimulated by chemical or biological signals. Chemoresponsive Materials introduces the area with chapters covering different responsive material systems including hydrogels, organogels, membranes, thin layers, polymer brushes, chemomechanical and imprinted polymers, nanomaterials, silica particles, as well as carbohydrate- and bio-based systems. Many promising applications are highlighted, with an emphasis on drug delivery, sensors and actuators. With contributions from internationally known experts, the book will appeal to graduate students and researchers in academia, healthcare and industry interested in functional materials and their applications.
Mip Synthesis, Characteristics and Analytical Application, Volume 86 in the Comprehensive Analytical Chemistry series, highlights advances in the field, with this new volume presenting interesting chapters on synthesis and polymerization techniques of molecularly imprinted polymers, Solid phase extraction technique as a general field of application of molecularly imprinted polymer materials, Advanced artificially receptor- based sorbents for solid phase extraction using molecular imprinting technology: a new trend in food analysis, Application of molecularly imprinted polymers in microextraction and solventless extraction techniques, Magnetic molecularly imprinted microspheres – analytical approach, Surface Imprinted Micro- and Nanoparticles, and much more. - Contains a valuable source of information on the wide spectrum of application fields of molecularly imprinted polymers as a green sorption medium - Describes the application potential of currently molecular imprinting technologies, associated with the solid phase extraction techniques, magnetic imprinted microspheres, sorbents in mass spectrometry, and imprinted polymer electrochemical sensors