Download Free Molecular Structure Diffusion Dynamics And Hydration Energetics Of Nano Confined Water And Water At Mineral Surfaces Book in PDF and EPUB Free Download. You can read online Molecular Structure Diffusion Dynamics And Hydration Energetics Of Nano Confined Water And Water At Mineral Surfaces and write the review.

The present work reflects a multi-disciplinary effort to address the topic of confined hydrosystems developed with a cross-fertilization panel of physics, chemists, biologists, soil and earth scientists. Confined hydrosystems include all situations in natural settings wherein the extent of the liquid phase is limited so that the solid-liquid and/or liquid-air interfaces may be critical to the properties of the whole system. Primarily, this so-called “residual” solution is occluded in pores/channels in such a way that decreases its tendency to evaporation, and makes it long-lasting in arid (Earth deserts) and hyper-arid (Mars soils) areas. The associated physics is available from domains like capillarity, adsorption and wetting, and surface forces. However, many processes are still to understand due to the close relationship between local structure and matter properties, the subtle interplay between the host and the guest, the complex intermingling among static reactivity and migration pathway. Expert contributors from Israel, Russia, Europe and US discuss the behaviour of water and aqueous solutes at different scale, from the nanometric range of carbon nanotubes and nanofluidics to the regional scale of aquifers reactive flow in sedimentary basins. This scientific scope allowed the group of participants with very different background to tackle the confinement topic at different scales. The book is organized according to four sections that include: i) flow, from nano- to mega-scale; ii) ions, hydration and transport; iii) in-pores/channels cavitation; iv) crystallization under confinement. Most of contributions relates to experimental works at different resolution, interpreted through classic thermodynamics and intermolecular forces. Simulation techniques are used to explore the atomic scale of interfaces and the migration in the thinnest angstrom-wide channels.
Neutron Applications in Earth, Energy and Environmental Sciences offers a comprehensive overview of the wide ranging applications of neutron scattering techniques to elucidate the fundamental materials properties at the nano-, micro- and meso-scale, which underpin research in the related fields of Earth, Energy and Environmental Sciences. Introductions to neutron scattering fundamentals and instrumentation are paired with a thorough review of the applications to a large variety of scientific and technological problems, written through the direct experience of leading scientists in each field. Tailored to a wide audience, this volume provides the novice with an inspiring introduction and stimulates the expert to consider these non-conventional problem solving techniques in his/her field of interest. Earth and environmental scientists, engineers, researchers and graduate students involved with materials science will find Neutron Applications in Earth, Energy and Environmental Sciences a valuable ready-to-use reference.
This book presents a number of studies on the molecular dynamics of cement-based materials. It introduces a practical molecular model of cement-hydrate, delineates the relationship between molecular structure and nanoscale properties, reveals the transport mechanism of cement-hydrate, and provides useful methods for material design. Based on the molecular model presented here, the book subsequently sheds light on nanotechnology applications in the design of construction and building materials. As such, it offers a valuable asset for researchers, scientists, and engineers in the field of construction and building materials.
With the increasing role of porous solids in conventional and newly emerging technologies, there is an urgent need for a deeper understanding of fluid behaviour confined to pore spaces of these materials especially with regard to their transport properties. From its early years, NMR has been recognized as a powerful experimental technique enabling direct access to this information. In the last two decades, the methodological development of different NMR techniques to assess dynamic properties of adsorbed ensembles has been progressed. This book will report on these recent advances and look at new broader applications in engineering and medicine. Having both academic and industrial relevance, this unique reference will be for specialists working in the research areas and for advanced graduate and postgraduate studies who want information on the versatility of diffusion NMR.
The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.
Fluid-aided mass transfer and subsequent mineral re-equilibration are the two defining features of metasomatism and must be present in order for metamorphism to occur. Coupled with igneous and tectonic processes, metasomatism has played a major role in the formation of the Earth’s continental and oceanic crust and lithospheric mantle as well as in their evolution and subsequent stabilization. Metasomatic processes can include ore mineralization, metasomatically induced alteration of oceanic lithosphere, mass transport in and alteration of subducted oceanic crust and overlying mantle wedge, which has subsequent implications regarding mass transport, fluid flow, and volatile storage in the lithospheric mantle overall, as well as both regional and localized crustal metamorphism. Metasomatic alteration of accessory minerals such as zircon or monazite can allow for the dating of metasomatic events as well as give additional information regarding the chemistry of the fluids responsible. Lastly present day movement of fluids in both the lithospheric mantle and deep to mid crust can be observed utilizing geophysical resources such as electrical resistivity and seismic data. Such observations help to further clarify the picture of actual metasomatic processes as inferred from basic petrographic, mineralogical, and geochemical data. The goal of this volume is to bring together a diverse group of geologists, each of whose specialities and long range experience regarding one or more aspects of metasomatism during geologic processes, should allow them to contribute to a series of review chapters, which outline the basis of our current understanding of how metasomatism influences and helps to control both the evolution and stability of the crust and lithospheric mantle.
Focusing on layered compounds at the core of materials intercalation chemistry, this reference comprehensively explores clays and other classes of materials exhibiting the ability to pillar, or establish permanent intracrystalline porosity within layers. It offers an authoritative presentation of their fundamental properties as well as summaries of
A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.