Download Free Molecular Simulation Of Phase Equilibria For Complex Fluids Book in PDF and EPUB Free Download. You can read online Molecular Simulation Of Phase Equilibria For Complex Fluids and write the review.

The general area of this project was the development and application of novel molecular simulation methods for prediction of thermodynamic and structural properties of complex polymeric, surfactant and ionic fluids. Over this project period, we have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong or long-range interactions in these systems and have generated data for well-defined mod-els that can be used to test theories and compare to experimental data. Overall, 42 archival papers and many invited and contributed presentations and lectures have been based on work supported by this project. 6 PhD, 1 M.S. and 2 postdoctoral students have been associated with this work, as listed in the body of the report.
The general area of this project is the development and application of molecular simulation methods for prediction of equilibrium properties of complex fluids. In the most recent project period, we focused on polar/ionic and surfactant systems. We have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong interactions in these systems, and have generated data for well-defined models that can be used to test theories and compare to experimental data.
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
Molecular simulation is a very powerful technique that allows us to predict thermodynamic and transport properties of bulk and confined phases, as well as phase equilibria and interfacial properties. These properties are often crucial to the design of chemical and related industrial processes. Molecular simulation can predict these properties over a wide range of conditions, in contrast with experiments, which at extreme conditions (e.g., high temperature and/or high pressure) are often very difficult and in some cases dangerous. Further more, semi-empirical and empirical engineering models can frequently only be used for the specific systems to which they are fitted - that is, they are interpolative rather than predictive. Therefore molecular modeling methods, including simulation, can play a very useful role in the design of new processes, as well as the prediction of new phenomena. In this thesis, we applied molecular simulation methods to four separate problems: vapor-liquid equilibrium for a polarizable model of water, liquid-liquid interfacial properties, phase equilibrium in confined systems, and mechanical properties of nano scale systems. The first three problems imply the study of phases in equilibrium under different conditions. The most simple is the vapor-liquid equilibrium of a single component. Thermophysical properties such as coexistence densities, vapor pressure, surface tension, and interfacial thickness were obtained for a polarizable model of water and compared with other simpler potential models and experimental results. Using the same methodology, the interfacial properties of binary and ternary mixtures with polar and non-polar fluids exhibiting liquid-liquid equilibrium were studied. The dependence of the interfacial properties with increasing molecular size of one compound was studied. For ternary mixtures, the presence of a surfactant molecule was studied at different concentrations of the surfactant. Phase equilibria inside single carbon nanotubes were studied for single and binary aqueous systems, the coexistence liquid densities were calculated and compared with results of water in hydrophobic nanopores, and in the bulk. The phase equilibria behavior was studied indirectly in terms of the pressure inside the nanotube. Molecular simulation is a very suitable tool to study mechanical properties of systems at the nanoscale. The interlayer friction forces in double-wall carbonnanotubes were studied for systems with axial length up to 100 nm. The oscillatory behavior resulting when the inner tube is pulled out and released was studied as a function of nanotube length, temperature, and internal conformation. The latter enabled the study of systems with different degree of commensurability.
Objective is to develop molecular simulation techniques for phase equilibria in complex systems. The Gibbs ensemble Monte Carlo method was extended to obtain phase diagrams for highly asymmetric and ionic fluids. The modified Widom test particle technique was developed for chemical potentials of long polymeric molecules, and preliminary calculations of phase behavior of simple model homopolymers were performed.
Objective is to develop molecular simulation techniques for phase equilibria in complex systems. The Gibbs ensemble Monte Carlo method was extended to obtain phase diagrams for highly asymmetric and ionic fluids. The modified Widom test particle technique was developed for chemical potentials of long polymeric molecules, and preliminary calculations of phase behavior of simple model homopolymers were performed.
Molecular simulation allows researchers unique insight into the structures and interactions at play in fluids. Since publication of the first edition of Molecular Simulation of Fluids, novel developments in theory, algorithms and computer hardware have generated enormous growth in simulation capabilities. This 2nd edition has been fully updated and expanded to highlight this recent progress, encompassing both Monte Carlo and molecular dynamic techniques, and providing details of theory, algorithms and both serial and parallel implementations. Beginning with a clear introduction and review of theoretical foundations, the book goes on to explore intermolecular potentials before discussing the calculation of molecular interactions in more detail. Monte Carlo simulation and integrators for molecular dynamics are then discussed further, followed by non-equilibrium molecular dynamics and molecular simulation of ensembles and phase equilibria. The use of object-orientation is examined in detail, with working examples coded in C++. Finally, practical parallel simulation algorithms are discussed using both MPI and GPUs, with the latter coded in CUDA. Drawing on the extensive experience of its expert author, Molecular Simulation of Fluids: Theory, Algorithms, Object-Orientation, and Parallel Computing 2nd Edition is a practical, accessible guide to this complex topic for all those currently using, or interested in using, molecular simulation to study fluids. Fully updated and revised to reflect advances in the field, including new chapters on intermolecular potentials and parallel algorithms Covers the application of both MPI and GPU programming to molecular simulation Covers a wide range of simulation topics using both Monte Carlo and molecular dynamics approaches Provides access to downloadable simulation code, including GPU code using CUDA, to encourage practice and support learning
The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes: Techniques for improving separation processes and making them more environmentally friendly. Theoretical concepts enabling the description and interpretation of solution properties. New models, notably the lattice-fluid and statistical associated-fluid theories. Polymer solutions, including gas-polymer equilibria, polymer blends, membranes, and gels. Electrolyte solutions, including semi-empirical models for solutions containing salts or volatile electrolytes. Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more. Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals working with mixtures and related processes.