Download Free Molecular Plasmonics Book in PDF and EPUB Free Download. You can read online Molecular Plasmonics and write the review.

Adopting a novel approach, this book provides a unique "molecular perspective" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as the various approaches to combining nanostructures and biomolecules to achieve certain desired functionalities for applications in the fields of probing, sensing and particle manipulation. For analytical biologists, physical chemists, materials scientists and medicinal chemists.
This book summarizes the results of studies of molecules and molecular complexes using techniques based on surface plasmon resonance (SPR) in a novel scientific direction called molecular plasmonics. It presents the current state of investigations in the field of molecular plasmonics and discusses its two main physical phenomena: surface plasmon–polariton resonance (SPPR) and localized SPR (LSPR). Among the mathematical methods for the calculation of plasmonic systems response, the book emphasizes models based on the transfer-matrix method, Green function formalism, Mie scattering theory, and numerical methods. It considers the possibilities of the SPPR technique for registering conformational changes, surface plasmon–mediated photopolymerization, electrochemical processes, as well as reversible optoelectronic and physicochemical properties during investigation of molecular systems. It describes applications of the LSPR method, including creation of metamaterials, surface-enhanced fluorescence, and bio- and chemosensing using noble metal nanoparticles in colloidal, array, and composite polymeric film formats. It also highlights the development and applications of plasmonic nanochips.
While several reviews and books on surface nanophotonics and fluorescence spectroscopy are available, an updated focus on molecular plasmonics, including both theoretical methods and experimental aspects, is still lacking. This handbook is a comprehensive overview on the physics of the plasmon-emitter interaction, ranging from electromagnetism to q
This book summarizes the results of studies of molecules and molecular complexes using techniques based on surface plasmon resonance (SPR) in a novel scientific direction called molecular plasmonics. It presents the current state of investigations in the field of molecular plasmonics and discusses its two main physical phenomena: surface plasmon–polariton resonance (SPPR) and localized SPR (LSPR). Among the mathematical methods for the calculation of plasmonic systems response, the book emphasizes models based on the transfer-matrix method, Green function formalism, Mie scattering theory, and numerical methods. It considers the possibilities of the SPPR technique for registering conformational changes, surface plasmon–mediated photopolymerization, electrochemical processes, as well as reversible optoelectronic and physicochemical properties during investigation of molecular systems. It describes applications of the LSPR method, including creation of metamaterials, surface-enhanced fluorescence, and bio- and chemosensing using noble metal nanoparticles in colloidal, array, and composite polymeric film formats. It also highlights the development and applications of plasmonic nanochips.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.
This book gives a comprehensive overview of recent advancements in both theory and practical implementation of plasmonic probes. Encompassing multiple disciplines, the field of plasmonics provides a versatile and flexible platform for nanoscale sensing and imaging. Despite being a relatively young field, plasmonic probes have come a long way, with applications in chemical, biological, civil, and architectural fields as well as enabling many analytical schemes such as immunoassay, biomarkers, environmental indexing, and water quality sensing, to name but a few. The objective of the book is to present in-depth analysis of the theory and applications of novel probes based on plasmonics, with a broad selection of specially-invited chapters on the development, fabrication, functionalization, and implementation of plasmonic probes as well as their integration with current technologies and future outlook. This book is designed to cater to the needs of novice, seasoned researchers and practitioners in academia and industry, as well as medical and environmental fields.
Manipulation of plasmonics from nano to micro scale. 1. Introduction. 2. Form-Birefringent metal and its plasmonic anisotropy. 3. Plasmonic photonic crystal. 4. Fourier plasmonics. 5. Nanoscale optical field localization. 6. Conclusions and outlook -- 11. Dielectric-loaded plasmonic waveguide components. 1. Introduction. 2. Design of waveguide dimensions. 3. Sample preparation and near-field characterization. 4. Excitation and propagation of guided modes. 5. Waveguide bends and splitters. 6. Coupling between waveguides. 7. Waveguide-ring resonators. 8. Bragg gratings. 9. Discussion-- 12. Manipulating nanoparticles and enhancing spectroscopy with surface plasmons. 1. Introduction. 2. Propulsion of gold nanoparticles with surface plasmon polaritons. 3. Double resonance substrates for surface-enhanced raman spectroscopy. 4. Conclusions and outlook -- 13. Analysis of light scattering by nanoobjects on a plane surface via discrete sources method. 1. Introduction. 2. Light scattering by a nanorod. 3. Light scattering by a nanoshell. 4. Summary -- 14. Computational techniques for plasmonic antennas and waveguides. 1. Introduction. 2. Time domain solvers. 3. Frequency domain solvers. 4. Plasmonic antennas. 5. Plasmonic waveguides. 6. Advanced structures. 7. Conclusions
This second volume in the Handai Nanophotonics book series covers the area of Nanoplasmonics, a recent hot topic in the field of nanophotonics, impacting a diverse range of research disciplines from information technology and nanotechnology to the bio- and medical sciences. The interaction between photons and metal nanostructures leads to interesting and extraordinary scientific phenomena and produces new functions for nano materials and devices. Newly discovered physical phenomena include local mode of surface plasmon polariton excited in nanoparticles, hot spots on nano-rods and nano-cones, long range mode of surface plasmons excited on thin metal films, and dispersion relationship bandgaps of surface plasmons in periodic metal structures. These have been applied to, for example, single molecule detection and nano-imaging/spectroscopy, photon accumulation for lasing applications, optical nano-waveguides and nano-circuits. * interdisciplinary research text on the application of nanoplasmonics research and effects in devices for applications * bridges the gap between conventional photophysics & photochemistry and nanoscience * continuing the series that focuses on 'hot' areas of photochemistry, optics, material science and bioscience.
Plasmonics is an emerging field mainly developed within the past two decades. Due to its unique capabilities to manipulate light at deep subwavelength scales, plasmonics has been commonly treated as the most important part of nanophotonics. Plasmonic-assisted optical microscopy techniques, especially super-resolution microscopy, have shown tremendous potential and attracted much attention. This book aims to collect cutting-edge studies in various optical imaging technologies with advanced performances that are enabled or enhanced by plasmonics. The basic working principles, development details, and potential future direction and perspectives are discussed. Edited by Zhaowei Liu, a prominent researcher in the field of super-resolution microscopy, this book will be an excellent reference for anyone in the field of nanophotonics, plasmonics, and optical microscopy.