Download Free Molecular Orbital Theory For Organic Chemists Book in PDF and EPUB Free Download. You can read online Molecular Orbital Theory For Organic Chemists and write the review.

Winner of the PROSE Award for Chemistry & Physics 2010 Acknowledging the very best in professional and scholarly publishing, the annual PROSE Awards recognise publishers' and authors' commitment to pioneering works of research and for contributing to the conception, production, and design of landmark works in their fields. Judged by peer publishers, librarians, and medical professionals, Wiley are pleased to congratulate Professor Ian Fleming, winner of the PROSE Award in Chemistry and Physics for Molecular Orbitals and Organic Chemical Reactions. Molecular orbital theory is used by chemists to describe the arrangement of electrons in chemical structures. It is also a theory capable of giving some insight into the forces involved in the making and breaking of chemical bonds—the chemical reactions that are often the focus of an organic chemist's interest. Organic chemists with a serious interest in understanding and explaining their work usually express their ideas in molecular orbital terms, so much so that it is now an essential component of every organic chemist's skills to have some acquaintance with molecular orbital theory. Molecular Orbitals and Organic Chemical Reactions is both a simplified account of molecular orbital theory and a review of its applications in organic chemistry; it provides a basic introduction to the subject and a wealth of illustrative examples. In this book molecular orbital theory is presented in a much simplified, and entirely non-mathematical language, accessible to every organic chemist, whether student or research worker, whether mathematically competent or not. Topics covered include: Molecular Orbital Theory Molecular Orbitals and the Structures of Organic Molecules Chemical Reactions — How Far and How Fast Ionic Reactions — Reactivity Ionic Reactions — Stereochemistry Pericyclic Reactions Radical Reactions Photochemical Reactions Slides for lectures and presentations are available on the supplementary website: www.wiley.com/go/fleming_student Molecular Orbitals and Organic Chemical Reactions: Student Edition is an invaluable first textbook on this important subject for students of organic, physical organic and computational chemistry. The Reference Edition edition takes the content and the same non-mathematical approach of the Student Edition, and adds extensive extra subject coverage, detail and over 1500 references. The additional material adds a deeper understanding of the models used, and includes a broader range of applications and case studies. Providing a complete in-depth reference for a more advanced audience, this edition will find a place on the bookshelves of researchers and advanced students of organic, physical organic and computational chemistry. Further information can be viewed here. "These books are the result of years of work, which began as an attempt to write a second edition of my 1976 book Frontier Orbitals and Organic Chemical Reactions. I wanted to give a rather more thorough introduction to molecular orbitals, while maintaining my focus on the organic chemist who did not want a mathematical account, but still wanted to understand organic chemistry at a physical level. I'm delighted to win this prize, and hope a new generation of chemists will benefit from these books." -Professor Ian Fleming
Provides a basic introduction to frontier orbital theory with a review of its applications in organic chemistry. Assuming the reader is familiar with the concept of molecular orbital as a linear combination of atomic orbitals the book is presented in a simple style, without mathematics making it accessible to readers of all levels.
A practical introduction to orbital interaction theory and its applications in modern organic chemistry Orbital interaction theory is a conceptual construct that lies at the very heart of modern organic chemistry. Comprising a comprehensive set of principles for explaining chemical reactivity, orbital interaction theory originates in a rigorous theory of electronic structure that also provides the basis for the powerful computational models and techniques with which chemists seek to describe and exploit the structures and thermodynamic and kinetic stabilities of molecules. Orbital Interaction Theory of Organic Chemistry, Second Edition introduces students to the fascinating world of organic chemistry at the mechanistic level with a thoroughly self-contained, well-integrated exposition of orbital interaction theory and its applications in modern organic chemistry. Professor Rauk reviews the concepts of symmetry and orbital theory, and explains reactivity in common functional groups and reactive intermediates in terms of orbital interaction theory. Aided by numerous examples and worked problems, he guides readers through basic chemistry concepts, such as acid and base strength, nucleophilicity, electrophilicity, and thermal stability (in terms of orbital interactions), and describes various computational models for describing those interactions. Updated and expanded, this latest edition of Orbital Interaction Theory of Organic Chemistry includes a completely new chapter on organometallics, increased coverage of density functional theory, many new application examples, and worked problems. The text is complemented by an interactive computer program that displays orbitals graphically and is available through a link to a Web site. Orbital Interaction Theory of Organic Chemistry, Second Edition is an excellent text for advanced-level undergraduate and graduate students in organic chemistry. It is also a valuable working resource for professional chemists seeking guidance on interpreting the quantitative data produced by modern computational chemists.
This textbook introduces the perturbation molecular orbital (PMO) th,eory of organic chemistry. Organic chemistry encompasses the largest body of factual information of any of the major divisions of science. The sheer bulk of the subject matter makes many demands on any theory that attempts to systematize it. Time has shown that the PMO method meets these demands admirably. The PMO method can provide practicing chemists with both a pictorial description of bonding and qualitative theoretical results that are well founded in more sophisticated treatments. The only requirements for use of the theory are high school algebra and a pencil and paper. The treatment described in this book is by no means new. Indeed, it was developed as a complete theory of organic chemistry more than twenty years ago. Although it was demonstrably superior to resonance theory and no more complicated to use, it escaped notice for two very simple reasons. First, the original papers describing it were very condensed, perhaps even obscure, and contained few if any examples. Second, for various reasons, no general account appeared in book form until 1969,* and this was still relatively inaccessible, being in the form of a monograph where molecular orbital (MO) theory was treated mainly at a much more sophisticated level. The generality of the PMO method is illustrated by the fact that all the new developments over the last two decades can be accommodated in it.
Provides the background, tools, and models required to understand organic synthesis and plan chemical reactions more efficiently Knowledge of physical chemistry is essential for achieving successful chemical reactions in organic chemistry. Chemists must be competent in a range of areas to understand organic synthesis. Organic Chemistry provides the methods, models, and tools necessary to fully comprehend organic reactions. Written by two internationally recognized experts in the field, this much-needed textbook fills a gap in current literature on physical organic chemistry. Rigorous yet straightforward chapters first examine chemical equilibria, thermodynamics, reaction rates and mechanisms, and molecular orbital theory, providing readers with a strong foundation in physical organic chemistry. Subsequent chapters demonstrate various reactions involving organic, organometallic, and biochemical reactants and catalysts. Throughout the text, numerous questions and exercises, over 800 in total, help readers strengthen their comprehension of the subject and highlight key points of learning. The companion Organic Chemistry Workbook contains complete references and answers to every question in this text. A much-needed resource for students and working chemists alike, this text: -Presents models that establish if a reaction is possible, estimate how long it will take, and determine its properties -Describes reactions with broad practical value in synthesis and biology, such as C-C-coupling reactions, pericyclic reactions, and catalytic reactions -Enables readers to plan chemical reactions more efficiently -Features clear illustrations, figures, and tables -With a Foreword by Nobel Prize Laureate Robert H. Grubbs Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis is an ideal textbook for students and instructors of chemistry, and a valuable work of reference for organic chemists, physical chemists, and chemical engineers.
This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.
Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.