Download Free Molecular Markers For Allele Mining Book in PDF and EPUB Free Download. You can read online Molecular Markers For Allele Mining and write the review.

Molecular Markers in Plants surveys an array of technologies used in the molecular analysis of plants. The role molecular markers play in plant improvement has grown significantly as DNA sequencing and high-throughput technologies have matured. This timely review of technologies and techniques will provide readers with a useful resource on the latest molecular technologies. Molecular Markers in Plants not only reviews past achievements, but also catalogs recent advances and looks forward towards the future application of molecular technologies in plant improvement. Opening chapters look at the development of molecular technologies. Subsequent chapters look at a wide range of applications for the use of these advances in fields as diverse as plant breeding, production, biosecurity, and conservation. The final chapters look forward toward future developments in the field. Looking broadly at the field of molecular technologies, Molecular Markers in Plants will be an essential addition to the library of every researcher, institution, and company working in the field of plant improvement.
Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants have opened new possibilities for advancing crop improvement. This Special Issue collects 16 research studies, including the application of molecular markers in 11 crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.
Production and utilization. Structure and gross composition of the rice grain. Chemical constituents. Nutritive value of rice and rice diets. Processing. Grain quality evaluation. Varietal quality types. Processed products. Bran. Hull and straw.
From the Department of Epidemiology at Johns Hopkins University and continuing in the tradition of award-winning educator and epidemiologist Dr. Leon Gordis, comes the fully revised 6th Edition of Gordis Epidemiology. This bestselling text provides a solid introduction to basic epidemiologic principles as well as practical applications in public health and clinical practice, highlighted by real-world examples throughout. New coverage includes expanded information on genetic epidemiology, epidemiology and public policy, and ethical and professional issues in epidemiology, providing a strong basis for understanding the role and importance of epidemiology in today's data-driven society. - Covers the basic principles and concepts of epidemiology in a clear, uniquely memorable way, using a wealth of full-color figures, graphs, charts, and cartoons to help you understand and retain key information. - Reflects how epidemiology is practiced today, with a new chapter organization progressing from observation and developing hypotheses to data collection and analyses. - Features new end-of-chapter questions for quick self-assessment, and a glossary of genetic terminology. - Provides more than 200 additional multiple-choice epidemiology self-assessment questions online. - Evolve Instructor Resources, including a downloadable image and test bank, are available to instructors through their Elsevier sales rep or via request at: https://evolve.elsevier.com
Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.
This book provides comprehensive information on the latest tools and techniques of molecular genetics and their applications in crop improvement. It thoroughly discusses advanced techniques used in molecular markers, QTL mapping, marker-assisted breeding, and molecular cytogenetics.
Overview of molecular technologies. Genebank management. Crop breeding.
Environmental insults such as extremes of temperature, extremes of water status as well as deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to help manipulate plant performance that will be better suited to withstand these stresses. This book on abiotic stress attempts to search for possible answers to several basic questions related to plant responses towards abiotic stresses. Presented in this book is a holistic view of the general principles of stress perception, signal transduction and regulation of gene expression. Further, chapters analyze not only model systems but extrapolate interpretations obtained from models to crops. Lastly, discusses how stress-tolerant crop or model plants have been or are being raised through plant breeding and genetic engineering approaches. Twenty three chapters, written by international authorities, integrate molecular details with overall plant structure and physiology, in a text-book style, including key references.
Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. - Explores origin, distribution and diversity of grain legumes - Presents information on germplasm collection, evaluation and maintenance - Offers insight into pre-breeding/germplasm enhancement efforts - Integrates genomic and genetic resources in crop improvement - Internationally contributed work