Download Free Molecular Kinetics In Condensed Phases Book in PDF and EPUB Free Download. You can read online Molecular Kinetics In Condensed Phases and write the review.

A guide to the theoretical and computational toolkits for the modern study of molecular kinetics in condensed phases Molecular Kinetics in Condensed Phases: Theory, Simulation and Analysis puts the focus on the theory, algorithms, simulations methods and analysis of molecular kinetics in condensed phases. The authors – noted experts on the topic – offer a detailed and thorough description of modern theories and simulation methods to model molecular events. They highlight the rigorous stochastic modelling of molecular processes and the use of mathematical models to reproduce experimental observations, such as rate coefficients, mean first passage times and transition path times. The book’s exploration of simulations examines atomically detailed modelling of molecules in action and the connections of these simulations to theory and experiment. The authors also explore the applications that range from simple intuitive examples of one- and two-dimensional systems to complex solvated macromolecules. This important book: Offers an introduction to the topic that combines theory, simulation and analysis Presents a guide written by authors that are well-known and highly regarded leaders in their fields Contains detailed examples and explanation of how to conduct computer simulations of kinetics. A detailed study of a two-dimensional system and of a solvated peptide are discussed. Discusses modern developments in the field and explains their connection to the more traditional concepts in chemical dynamics Written for students and academic researchers in the fields of chemical kinetics, chemistry, computational statistical mechanics, biophysics and computational biology, Molecular Kinetics in Condensed Phases is the authoritative guide to the theoretical and computational toolkits for the study of molecular kinetics in condensed phases.
This book deals with a central topic at the interface of chemistry and physics - the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a detailed presentation of transition-state theory which plays an important role in practice, and a comprehensive discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems.
The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.
Selected Readings in Chemical Kinetics covers excerpts from 12 papers in the field of general and gas-phase kinetics. The book discusses papers on the laws of connexion between the conditions of a chemical change and its amount; on the reaction velocity of the inversion of the cane sugar by acids; and the calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. The text then tackles papers on simple gas reactions; on the absolute rate of reactions in condensed phases; on the radiation theory of chemical action; and on the theory of unimolecular reactions. Papers on the theories of unimolecular reactions at low pressures; on the reaction between hydrogen and bromine; and on the oxidation of phosphorus vapor at low pressures are also considered. The book further describes papers on the thermal decomposition of organic compounds from the standpoint of free radicals; as well as on a single chain mechanism for the thermal decomposition of hydrocarbons. The book will be invaluable to students of chemical kinetics.
This is the physical chemistry textbook for students with an affinity for computers! It offers basic and advanced knowledge for students in the second year of chemistry masters studies and beyond. In seven chapters, the book presents thermodynamics, chemical kinetics, quantum mechanics and molecular structure (including an introduction to quantum chemical calculations), molecular symmetry and crystals. The application of physical-chemical knowledge and problem solving is demonstrated in a chapter on water, treating both the water molecule as well as water in condensed phases. Instead of a traditional textbook top-down approach, this book presents the subjects on the basis of examples, exploring and running computer programs (Mathematica®), discussing the results of molecular orbital calculations (performed using Gaussian) on small molecules and turning to suitable reference works to obtain thermodynamic data. Selected Mathematica® codes are explained at the end of each chapter and cross-referenced with the text, enabling students to plot functions, solve equations, fit data, normalize probability functions, manipulate matrices and test physical models. In addition, the book presents clear and step-by-step explanations and provides detailed and complete answers to all exercises. In this way, it creates an active learning environment that can prepare students for pursuing their own research projects further down the road. Students who are not yet familiar with Mathematica® or Gaussian will find a valuable introduction to computer-based problem solving in the molecular sciences. Other computer applications can alternatively be used. For every chapter learning goals are clearly listed in the beginning, so that readers can easily spot the highlights, and a glossary in the end of the chapter offers a quick look-up of important terms.
The book is devoted to the consideration of the different processes taking place in thin films and at surfaces. Since the most important physico-chemical phenomena in such media are accompanied by the rearrangement of an intra- and intermolecular coordinates and consequently a surrounding molecular ensemble, the theory of radiationless multi-vibrational transitions is used for its description. The second part of the book considers the numerous surface phenomena. And in the third part is described the preparation methods and characteristics of different types of thin films. Both experimental and theoretical descriptions are represented. Media rearrangement coupled with the reagent transformation largely determines the absolute value and temperature dependence of the rate constants and other characteristics of the considered processes. These effects are described at the atomic or molecular level based on the multi-phonon theory, starting from the first pioneering studies through to contemporary studies.A number of questions are included at the end of many chapters to further reinforce the material presented.· Unified approach to the description of numerous physico-chemical phenomena in different materials· Based on the pioneering research work of the authors· Explantion of a variety of experimental observations· Material is presented at two levels of complexity for specialists and non-specialists · Identifies existing and potential applications of the processes and phenomena · Includes questions at the end of some chapters to further reinforce the material discussed
These notes on the use of one particular form of the time-dependent rate constant to describe the reaction patterns in condensed media have been put together primarily to encourage chemists to try and accept this new way of experimental data treatment. A number of applications is shown and interpretative aspects are discussed. Emphasized are the problems that need to be currently solved. Some of them are also of current interest in condensed phase physics from which the chemical kinetics benefits a great deal. It was inevitable that the choice of subject matter from both rapidly expanding fields and its form of pre sentation reflect to some extent the author's own interests and some important topics are treated briefly or even omitted. Fully recognizing this, I would like to acknowledge with gratitude the contributions to the subject of all my coworkers in the Laboratories of Lodz, Detroit Mi, MUlheim/Ruhr, and Houston Tx, and of those who helped me in preparing this text. Dr. Wlodzi~ierz Lefik and my son WojciecQ recalculated most of the experimental results, Mrs. Aleksandra Karczewska redrew all the figures. Special thanks go to my wife Ewa for her invaluable assistance in all works and for the final form of the text. AP Lodz, February 1986 CONTENTS 1. Introduction 1 2. Reaction kinetics of species trapped in glassy matrices 6 Excess electrons (6): Post-irradiated decay (6). Spectral relaxation (11). Photostimulated decay (15). Photostimu lated conversion into trapped hydrogen atoms (17). Radio luminescence kinetics (21).
Graduate level textbook presenting some of the most fundamental processes that underlie physical, chemical and biological phenomena in complex condensed phase systems. Includes in-depth descriptions of relevant methodologies, and provides ample introductory material for readers of different backgrounds.
Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.
Exploring recent developments in the field, Coarse-Graining of Condensed Phase and Biomolecular Systems examines systematic ways of constructing coarse-grained representations for complex systems. It explains how this approach can be used in the simulation and modeling of condensed phase and biomolecular systems. Assembling some of the most influential, world-renowned researchers in the field, this book covers the latest developments in the coarse-grained molecular dynamics simulation and modeling of condensed phase and biomolecular systems. Each chapter focuses on specific examples of evolving coarse-graining methodologies and presents results for a variety of complex systems. The contributors discuss the minimalist, inversion, and multiscale approaches to coarse-graining, along with the emerging challenges of coarse-graining. They also connect atomic-level information with new coarse-grained representations of complex systems, such as lipid bilayers, proteins, peptides, and DNA.