Download Free Molecular Interfacial Phenomena Of Polymers And Biopolymers Book in PDF and EPUB Free Download. You can read online Molecular Interfacial Phenomena Of Polymers And Biopolymers and write the review.

One of the most exciting areas of polymer research is the study of interfacial phenomena and their practical applications. This major work reviews the key research in this important area and is used in such areas as biomaterials.Part one looks at the thermodynamics, kinetics and other fundamental properties of polymer surfaces and interfaces. The second part of the book reviews ways of characterising and manipulating interfacial phenomena. It includes examples of practical applications such as vaccine delivery, tissue engineering and the development of therapeutic lung surfactants.With its distinguished editor and international team of contributors, Molecular interfacial phenomena of polymers and biopolymers is a standard work on understanding polymeric interfacial properties and their medical and other practical applications. - Reviews key research in this hot area including biomaterials - Examines polymeric interfacial properties and reviews medical and other practical applications - Edited by a leading authority with contributions from distinguished experts worldwide
This book combines three fundamental areas of interest to the science and engineering community, these being material science, nanotechnology and molecular engineering. Although there have been various results published in this field, there has yet to be a fully comprehensive review. This book covers key research on molecular mechanisms and thermodynamic behaviour of (bio)polymer surfaces and interfaces, from theoretical and experimental perspectives.
The response of cells to biomaterials is critical in medical devices. Traditionally inert biomaterials were used to minimise the reaction in cells in contact with the material. However, it has been realised that specific cell responses may be beneficial in such areas as encouraging adhesion, healing or cell multiplication. Cellular response to biomaterials discusses the response of cells to a wide range of biomaterials targeted at specific medical applications.Part one discusses cell responses to a variety of polymers and ceramics with chapters on such topics as degradable polymers and biocompatibility. Part two covers cell responses and regenerative medicine with coverage of themes such as vascular grafts, nerve repair and Bioglass®. Part three examines the effect of surfaces and proteins on cell response. Specific chapters review nano-engineered surfaces, the influence of plasma proteins on bone cell adhesion and surface modification of titanium implants.With its distinguished editor and team of international contributors, Cellular response to biomaterials is an essential read for those researching or studying medical devices in industry and academia. - Examines the response of cells to a wide range of biomaterials targeted at specific medical applications - Discusses cell responses and regenerative medicine with specific chapters on vascular grafts and nerve repair - Assesses the effect of surfaces and proteins on cell response including the influence of plasma proteins on cell adhesion and surface modification of titanium implants
Annual Plant Reviews, Volume 23 A much clearer picture is now emerging of the fine structure of the plant cuticle and its surface, the composition of cuticular waxes and the biosynthetic pathways leading to them. Studies assessing the impact of UV radiation on plant life have emphasized the role of the cuticle and underlying epidermis as optical filters for solar radiation. The field concerned with the diffusive transport of lipophilic organic non-electrolytes across the plant cuticle has reached a state of maturity. A new paradigm has recently been proposed for the diffusion of polar compounds and water across the cuticle. In the context of plant ecophysiology, cuticular transpiration can now be placed in the perspective of whole-leaf water relations. New and unexpected roles have been assigned to the cuticle in plant development and pollen-stigma interactions. Finally, much progress has been made in understanding the cuticle as a specific and extraordinary substrate for the interactions of the plant with microorganisms, fungi and insects. This volume details the major developments of recent years in this important interdisciplinary area. It is directed at researchers and professionals in plant biochemistry, plant physiology, plant ecology, phytopathology and environmental microbiology, in both the academic and industrial sectors.
Technology and research in the field of tissue engineering has drastically increased within the last few years to the extent that almost every tissue and organ of the human body could potentially be regenerated. With its distinguished editors and international team of contributors, Tissue Engineering using Ceramics and Polymers reviews the latest research and advances in this thriving area and how they can be used to develop treatments for disease states. Part one discusses general issues such as ceramic and polymeric biomaterials, scaffolds, transplantation of engineered cells, surface modification and drug delivery. Later chapters review characterisation using x-ray photoelectron spectroscopy and secondary ion mass spectrometry as well as environmental scanning electron microscopy and Raman micro-spectroscopy. Chapters in part two analyse bone regeneration and specific types of tissue engineering and repair such as cardiac, intervertebral disc, skin, kidney and bladder tissue. The book concludes with the coverage of themes such as nerve bioengineering and the micromechanics of hydroxyapatite-based biomaterials and tissue scaffolds. Tissue Engineering using Ceramics and Polymers is an innovative reference for professionals and academics involved in the field of tissue engineering. - An innovative and up-to-date reference for professionals and academics - Environmental scanning electron microscopy is discussed - Analyses bone regeneration and specific types of tisue engineering
As a spectroscopic method, nuclear magnetic resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Nucleic Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications. Volume 37 covers literature published from June 2006 to May 2007.
Providing a broad survey of the entire field, 'Macromolecules' integrates representations of chemistry, physics and technology, as well as including precise descriptions of basic phenomena and balanced treatments of facts and theory.
Biopolymer-Based Formulations: Biomedical and Food Applications presents the latest advances in the synthesis and characterization of advanced biopolymeric formulations and their state-of-the-art applications across biomedicine and food science. Sections cover the fundamentals, applications, future trends, environmental, ethical and medical considerations, and biopolymeric architectures that are organized in nano, micro and macro scales. The final section of the book focuses on novel applications and recent developments. This book is an essential resource for researchers, scientists and advanced students in biopolymer science, polymer science, polymer chemistry, polymer composites, plastics engineering, biomaterials, materials science, biomedical engineering, and more. It will also be of interest to R&D professionals, scientists and engineers across the plastics, food, biomedical and pharmaceutical industries. - Provides in-depth coverage of methods for the characterization of the physical properties of biopolymeric architectures - Supports a range of novel applications, including scaffolds, implant coatings, drug delivery, and nutraceutical encapsulation systems - Includes the use of experimental data and mathematical modeling, thus enabling the reader to analyze and compare the properties of different polymeric gels