Download Free Molecular Infection Biology Book in PDF and EPUB Free Download. You can read online Molecular Infection Biology and write the review.

This book reviews recent advances in the molecular and infection biology, pathology, and molecular epidemiology of Mycobacterium tuberculosis, as well as the identification and validation of novel molecular drug targets for the treatment of this mycobacterial disease. Despite being completely curable, tuberculosis is still one of the leading global causes of death. M. tuberculosis, the causative organism – one of the smartest pathogens known – adopts highly intelligent strategies for survival and pathogenesis. Presenting a wealth of information on the molecular infection biology of M. tuberculosis, as well as nontuberculous mycobacteria (NTM), the book provides an overview of the functional role of the PE/PPE group of proteins, which is exclusive to the genus Mycobacteria, of host-pathogen interactions, and virulence. It also explores the pathogenesis of the infection, pathology, epidemiology, and diagnosis of NTM. Finally it discusses current and novel approaches in vaccine development against tuberculosis, including the role of nanotechnology. With state-of-the-art contributions from experts in the respective domains, this book is an informative resource for practitioners as well as medical postgraduate students and researchers.
Molecular Typing in Bacterial Infections covers common bacterial pathogenic agents, with the most effective methods for their identification and classification in the light of their specific epidemiology. The book will be a valuable resource for molecular typing of infectious diseases agents encountered in both the research and hospital clinical lab settings, as well as culture collections. Each chapter provides an overview of molecular approaches to typing bacterial pathogens. Part I gives a general overview of typing methods used in the traditional microbiology laboratory in comparison to molecular methods of epidemiology. In Part II, the relative strengths and weaknesses of the different methods applicable to the specific agents of infectious diseases are emphasized. Specific emphasis is placed on recent changes and updates in molecular typing.
This comprehensive volume focuses on molecular methods and principles of prokaryotic and eukaryotic pathogens. The authors present the molecular and cellular aspects by focusing on the interactions between pathogenic microorganisms and their hosts. The publication begins with an overview of the most important and dangerous causative agents of infectious diseases. Next are discussions of how microbial "weapons," pathogenicity factors, protein secretion machines, and surface variation systems work, presenting the molecular and genetic methods that are used by scientists for their discovery and analysis. Furthermore, infectious diseases are discussed in light of the newly formed research areas of evolutionary and cellular microbiology and genomics. Future aspects on diagnostic techniques, therapy, and vaccine development are also presented.
Molecular Tools and Infectious Disease Epidemiology examines the opportunities and methodologic challenges in the application of modern molecular genetic and biologic techniques to infectious disease epidemiology. The application of these techniques dramatically improves the measurement of disease and putative risk factors, increasing our ability to detect and track outbreaks, identify risk factors and detect new infectious agents. However, integration of these techniques into epidemiologic studies also poses new challenges in the design, conduct, and analysis. This book presents the key points of consideration when integrating molecular biology and epidemiology; discusses how using molecular tools in epidemiologic research affects program design and conduct; considers the ethical concerns that arise in molecular epidemiologic studies; and provides a context for understanding and interpreting scientific literature as a foundation for subsequent practical experience in the laboratory and in the field. The book is recommended for graduate and advanced undergraduate students studying infectious disease epidemiology and molecular epidemiology; and for the epidemiologist wishing to integrate molecular techniques into his or her studies. - Presents the key points of consideration when integrating molecular biology and epidemiology - Discusses how using molecular tools in epidemiologic research affects program design and conduct - Considers the ethical concerns that arise in molecular epidemiologic studies - Provides a context for understanding and interpreting scientific literature as a foundation for subsequent practical experience in the laboratory and in the field
"Principles of Molecular Virology, Fourth Edition" provides an essential introduction to modern virology in a clear and concise manner. It is a highly enjoyable and readable text with numerous illustrations that enhance the reader's understanding of important principles. It contains new material on virus structure, virus evolution, zoonoses, bushmeat, SARS and bioterrorism. The standard version includes a CD-ROM with Flash animations, virtual interactive tutorials and experiments, self-assessment questions, useful online resources, along with the glossary, classification of subcellular infectious agents and history of virology.
Viruses interact with host cells in ways that uniquely reveal a great deal about general aspects of molecular and cellular structure and function. Molecular and Cellular Biology of Viruses leads students on an exploration of viruses by supporting engaging and interactive learning. All the major classes of viruses are covered, with separate chapters for their replication and expression strategies, and chapters for mechanisms such as attachment that are independent of the virus genome type. Specific cases drawn from primary literature foster student engagement. End-of-chapter questions focus on analysis and interpretation with answers being given at the back of the book. Examples come from the most-studied and medically important viruses such as HIV, influenza, and poliovirus. Plant viruses and bacteriophages are also included. There are chapters on the overall effect of viral infection on the host cell. Coverage of the immune system is focused on the interplay between host defenses and viruses, with a separate chapter on medical applications such as anti-viral drugs and vaccine development. The final chapter is on virus diversity and evolution, incorporating contemporary insights from metagenomic research. Key selling feature: Readable but rigorous coverage of the molecular and cellular biology of viruses Molecular mechanisms of all major groups, including plant viruses and bacteriophages, illustrated by example Host-pathogen interactions at the cellular and molecular level emphasized throughout Medical implications and consequences included Quality illustrations available to instructors Extensive questions and answers for each chapter
A comprehensive overview of clinically important infections of the urinary tract Urinary tract infections (UTIs) continue to rank among the most common infectious diseases of humans, despite remarkable progress in the ability to detect and treat them. Recurrent UTIs are a continuing problem and represent a clear threat as antibiotic-resistant organisms and infection-prone populations grow. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management brings the scientific community up to date on the research related to these infections that has occurred in the nearly two decades since the first edition. The editors have assembled a team of leading experts to cover critical topics in these main areas: clinical aspects of urinary tract infections, including anatomy, diagnosis, and management, featuring chapters on the vaginal microbiome as well as asymptomatic bacteriuria, prostatitis, and urosepsis the origins and virulence mechanisms of the bacteria responsible for most UTIs, including uropathogenic Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae the host immune response to UTIs, the rise of antibiotic-resistant strains, and the future of therapeutics This essential reference serves as both a resource and a stimulus for future research endeavors for anyone with an interest in understanding these important infections, from the classroom to the laboratory and the clinic. If you are looking for online access to the latest clinical microbiology content, please visit www.wiley.com/learn/clinmicronow.
Candida, which was discovered more than a century ago as a causative organism of oral thrush, is now thought to potentially infect almost every tissue of the human body. Although we still do not have a safe anti-candida drug, the growing pace of progess of research on Candida albicans holds promise that a breakthrough is imminent. Though many monographs and articles on candida and candidoses have appeared in recent years, they mostly cover the clinical aspects. This particular text, however, explains the more basic features of candida including the molecular genetics, molecular biology and immunology of the cell wall, the molecular basis of morphogenesis and the structure and function of the plasma membrane. The role of anti-candida drugs and their mechanism of action are also discussed.
Only one generation ago, entomology was a proudly isolated discipline. In Comstock Hall, the building of the Department of Entomology at Cornell University where I was first introduced to experimental science in the laboratory of Tom Eisner, those of us interested in the chemistry of life felt like interlopers. In the 35 years that have elapsed since then, all of biology has changed, and entomology with it. Arrogant molecular biologists and resentful classical biologists might think that what has happened is a hostile take-over of biology by molecular biology. But they are wrong. More and more we now understand that the events were happier and much more exciting, amounting to a new synthesis. Molecular Biology, which was initially focused on the simplest of organisms, bacteria and viruses, broke out of its confines after the initial fundamental questions were answered - the structure of DNA, the genetic code, the nature of regulatory genes - and, importantly, as its methods became more and more generally applicable. The recombinant DNA revo lution of the 1970s, the development of techniques for sequencing macromolecules, the polymerase chain reaction, new molecular methods of genetic analysis, all brought molecular biology face to face with the infinite complexity and the exuber ant diversity of life. Molecular biology itself stopped being an isolated diScipline, pre occupied with the universal laws of life, and became an approach to addressing fas cinating specific problems from every field of biology.