Download Free Molecular Imaging Of Prostate Cancer Book in PDF and EPUB Free Download. You can read online Molecular Imaging Of Prostate Cancer and write the review.

This book is a basic, practical guide to performing and interpreting state-of-the-art prostate MRI, utilizing the latest guidelines in the field. Prostate MRI has become one of the fastest growing examinations in the radiology practice, and this demand has continuously increased within the past decade. Since it is relatively new, MRI of the prostate is predominantly being performed at academic institutions, however there is a growing demand within the lower-tier health care institutions to offer this examination to their patients. This is an ideal guide for radiologists who want to enhance or initiate prostate MRI service for their referring clinicians and as a manual for technologists and those who are in training. Prostate cancer is the second leading cause of cancer death in men, exceeded only by lung cancer. The best predictor of disease outcome lies with correct diagnosis, which requires precise imaging and diagnostic procedures aided by prostate MRI. Urologists, medical oncologists and radiation oncologists all agree that multi-parametric prostate MRI is essential for evaluation of prostate cancer. However, the technical aspects of prostate MR imaging are not as straightforward as for the other imaging modalities and constantly evolving. Its small size presents a real challenge to the radiologist, who needs to do the T2 and diffusion weighted images and perform a dynamic contrast enhanced sequence correctly. These images may also need to be analyzed on an independent workstation. Due to the absence of a current reference manual, when a radiologist wants to establish a prostate imaging service, he/she needs to attend dedicated prostate MR workshops or dive into the literature search alone, only to get more confused about what to do and how to do it. With this book, expert authors were asked to give clear guidance to those who want to enhance or initiate their prostate imaging service. With this much-needed, concise, practical guidance, radiologists can perform and interpret multi-parametric prostate MRI in a standardized fashion, in concordance with PI-RADS v2.1 that can be applicable to all available hardware platforms (GE, Philips, Siemens, Toshiba). Additionally, they can perform post-processing for possible targeted biopsy and interpret post-therapy and PET studies. The book discusses imaging protocols (planning and prescription) and sequence parameters with representative images for each MRI sequence. This handbook-style practical manual can be used in the radiology reading room by those interpreting the MR exam as a reference as well as at the MRI scanner by the technologists as a guide. Coverage of basic prostate anatomy, pathology, Urologists’ point of view, MRI guided radiation treatment planning and molecular imaging is also included. Throughout the book, authors will discuss basics, pitfalls, and provide tips in image acquisition and interpretation, alongside several case examples.
This volume focuses on our current understanding of the molecular underpinnings of prostate cancer and their potential application for precision medicine approaches. The emergence and applications of new technologies has allowed for a rapid expansion of our understanding of the molecular basis of prostate cancer and has revealed a remarkable genetic heterogeneity that may underlie the clinically variable behavior of the disease. The book consists of five sections which provide insight about the following: (1) General principles; (2) Molecular signatures of primary prostate cancer; (3) Molecular signatures of advanced prostate cancer; (4) Key molecular pathways in prostate cancer development and progression; (5) and Precision medicine approach: Diagnosis, treatment, prognosis. Precision Molecular Pathology of Prostate Cancer is an important resource for the practicing oncologist, urologist, and pathologist, and will also be useful for researchers in the prostate cancer community.
This pocket book explains the significant and well-documented impact that PET/CT can have on the management of prostate cancer through the provision of high-quality evidence regarding function and structure. Up-to-date information is supplied on the relevance of PET/CT to diagnosis, treatment planning, and therapy, including the emerging role of PET/CT with PSMA. Readers will also find clear explanation of the relation of the clinical and pathological background to imaging and the value of PET/CT compared with conventional radiological imaging. The book will be an excellent asset for referring clinicians, nuclear medicine/radiology physicians, radiographers/technologists, and nurses who routinely work in nuclear medicine and participate in multidisciplinary meetings. It is published within the Springer series Clinicians’ Guides to Radionuclide Hybrid Imaging, which presents contributions from professionals worldwide who share a common purpose in promoting nuclear medicine as an important imaging specialty for the diagnosis and management of oncological and non-oncological conditions.
This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.
This volume covers classic and modern cell and molecular biology of prostate cancer, as well as novel biomarkers, inflammation, centrosome pathologies, microRNAs, cancer initiation novel biomarkers, inflammation, centrosome pathologies, microRNAs, cancer initiation and genetics, epigenetics, mitochondrial dysfunctions and apoptosis, cancer stem cells, angiogenesis and progression to metastasis, and treatment strategies including clinical trials related to prostate cancer. Cell & Molecular Biology of Prostate Cancer is one of two companion books comprehensively addressing the biology and clinical aspects of prostate cancer. Prostate Cancer: Molecular & Diagnostic Imaging and Treatment Stategies, the companion volume, discusses both classic and the most recent imaging approaches including analysis of needle biopsies, applications of nanoparticle probes and peptide-based radiopharmaceuticals for detection, early diagnosis and treatment of prostate cancer. Taken together, these volumes form one comprehensive and invaluable contribution to the literature.
Focal therapy is a promising option for selected patients who have localized low or intermediate-risk prostate cancer, providing a compelling alternative between active surveillance and radical therapies by targeting the index lesion and preserving as much tissue as possible. Numerous cohort studies have already investigated multiple focal techniques, such as cryotherapy, high-intensity focused ultrasound, brachytherapy, photodynamic therapy, laser therapy, irreversible electroporation and cyberknife methods, all of which have demonstrated positive oncological outcomes with 70 to 90 % negative follow-up biopsy. These various ablative techniques have produced only minor side-effects concerning urinary function, a low rate of erectile dysfunction, and have demonstrated a limited rectal toxicity. As a result, the primary end-point has now shifted and a new strategy needs to be established for patient follow-up and for defining treatment failure. Written by international experts in the field, this book is mainly focused on new techniques, all of which are amply illustrated. Technical Aspects of Focal Therapy in Localized Prostate Cancer will be of great practical value to all urologists and oncologists.
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Clinical Precision Medicine: A Primer offers clinicians, researchers and students a practical, up-to-date resource on precision medicine, its evolving technologies, and pathways towards clinical implementation. Early chapters address the fundamentals of molecular biology and gene regulation as they relate to precision medicine, as well as the foundations of heredity and epigenetics. Oncology, an early adopter of precision approaches, is considered with its relationship to genetic variation in drug metabolism, along with tumor immunology and the impact of DNA variation in clinical care. Contributions by Stephanie Kramer, a Clinical Genetic Counselor, also provide current information on prenatal diagnostics and adult genetics that highlight the critical role of genetic counselors in the era of precision medicine. - Includes applied discussions of chromosomes and chromosomal abnormalities, molecular genetics, epigenetic regulation, heredity, clinical genetics, pharmacogenomics and immunogenomics - Features chapter contributions from leaders in the field - Consolidates fundamental concepts and current practices of precision medicine in one convenient resource
This multidisciplinary textbook is designed to be the standard on the subject and is geared for use by physicians who are involved in the care and/or diagnosis of cancer patients. Comprehensive coverage is provided on all aspects of radioguided surgery. Practical information is readily accessible and throughout there is an emphasis on improved decision making. Tables present the indications, performance, and interpretation of procedures at a glance. A wealth of illustrations, including a full-color insert, enhances the application of new concepts.
Covering both the fundamentals and recent developments in this fast-changing field, Essentials of Nuclear Medicine and Molecular Imaging, 7th Edition, is a must-have resource for radiology residents, nuclear medicine residents and fellows, nuclear medicine specialists, and nuclear medicine technicians. Known for its clear and easily understood writing style, superb illustrations, and self-assessment features, this updated classic is an ideal reference for all diagnostic imaging and therapeutic patient care related to nuclear medicine, as well as an excellent review tool for certification or MOC preparation. - Provides comprehensive, clear explanations of everything from principles of human physiology, pathology, physics, radioactivity, radiopharmaceuticals, radiation safety, and legal requirements to hot topics such as new brain and neuroendocrine tumor agents and hybrid imaging, including PET/MR and PET/CT. - Covers the imaging of every body system, as well as inflammation, infection and tumor imaging; pearls and pitfalls for every chapter; and pediatric doses and guidelines in compliance with the Image Gently and Image Wisely programs. - Features a separate self-assessment section on differential diagnoses, imaging procedures and artifacts, and safety issues with unknown cases, questions, answers, and explanations. - Includes new images and illustrations, for a total of 430 high-quality, multi-modality examples throughout the text. - Reflects recent advances in the field, including updated nuclear medicine imaging and therapy guidelines • Updated dosimetry values and effective doses for all radiopharmaceuticals with new values from the 2015 International Commission on Radiological Protection • Updated information regarding advances in brain imaging, including amyloid, dopamine transporter and dementia imaging • Inclusion of Ga-68 DOTA PET/CT for neuroendocrine tumors • Expanded information on correlative and hybrid imaging with SPECT/CT • New myocardial agents • and more. - Contains extensive appendices including updated comprehensive imaging protocols for routine and hybrid imaging, pregnancy and breastfeeding guidelines, pediatric dosages, non-radioactive pharmaceuticals used in interventional and cardiac stress imaging, and radioactivity conversion tables.