Download Free Molecular Imaging And Targeted Therapy Book in PDF and EPUB Free Download. You can read online Molecular Imaging And Targeted Therapy and write the review.

This book introduces molecular imaging and Target Therapy in various cancers. The first part is the subjects and primary focused on the basics of nuclear physics, radiation dosimetry, nuclear medicine equipment and small animal imaging equipment. The second part is about the radiopharmaceutical and commonly used clinical radiopharmaceuticals, including positron emission imaging agent, single photon emission imaging agent, and radionuclide therapy agents as well as their radioactive preparation, quality control, and a brief clinical application were included. Also, this part introduces a number of new imaging agents which were potential value of clinical applications. In the third part, the clinical application of the conventional imaging agent 18F-FDG in different tumors and neurodegenerative diseases and 18F-Dopa imaging in the nervous system are discussed. Besides the clinical applications of 99mTc labeled radiopharmaceuticals in parathyroid disease, coronary heart disease, myocardial infarction, sentinel lymph node, metastatic bone tumors, liver and gallbladder disease in children are introduced. Finally, the applications of radionuclide 131I on treatments of Graves' disease and differentiated thyroid cancer and metastases are investigated respectively. This book is a useful reference for professionals engaged in nuclear medicine and clinical research, including clinical nuclear medicine physicians, nuclear medicine engineers and nuclear medicine pharmacists.
Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.
Targeted Molecular Imaging covers the development of novel diagnostic approaches that use an imaging probe and agent to noninvasively visualize cellular processes in normal and disease states. It discusses the concept, development, preclinical studies, and, in many cases, translation to the clinic of targeted imaging agents. The many case studies t
Covering both the fundamentals and recent developments in this fast-changing field, Essentials of Nuclear Medicine and Molecular Imaging, 7th Edition, is a must-have resource for radiology residents, nuclear medicine residents and fellows, nuclear medicine specialists, and nuclear medicine technicians. Known for its clear and easily understood writing style, superb illustrations, and self-assessment features, this updated classic is an ideal reference for all diagnostic imaging and therapeutic patient care related to nuclear medicine, as well as an excellent review tool for certification or MOC preparation. - Provides comprehensive, clear explanations of everything from principles of human physiology, pathology, physics, radioactivity, radiopharmaceuticals, radiation safety, and legal requirements to hot topics such as new brain and neuroendocrine tumor agents and hybrid imaging, including PET/MR and PET/CT. - Covers the imaging of every body system, as well as inflammation, infection and tumor imaging; pearls and pitfalls for every chapter; and pediatric doses and guidelines in compliance with the Image Gently and Image Wisely programs. - Features a separate self-assessment section on differential diagnoses, imaging procedures and artifacts, and safety issues with unknown cases, questions, answers, and explanations. - Includes new images and illustrations, for a total of 430 high-quality, multi-modality examples throughout the text. - Reflects recent advances in the field, including updated nuclear medicine imaging and therapy guidelines • Updated dosimetry values and effective doses for all radiopharmaceuticals with new values from the 2015 International Commission on Radiological Protection • Updated information regarding advances in brain imaging, including amyloid, dopamine transporter and dementia imaging • Inclusion of Ga-68 DOTA PET/CT for neuroendocrine tumors • Expanded information on correlative and hybrid imaging with SPECT/CT • New myocardial agents • and more. - Contains extensive appendices including updated comprehensive imaging protocols for routine and hybrid imaging, pregnancy and breastfeeding guidelines, pediatric dosages, non-radioactive pharmaceuticals used in interventional and cardiac stress imaging, and radioactivity conversion tables.
This book, now published in its second edition, covers a wide range of topics relating to the use of radiopharmaceuticals. The basics of nuclear chemistry, radiochemistry, and radiopharmacology are considered in detail, regulatory issues are reviewed, and potential applications in drug development, translational medicine, clinical diagnostics, and targeted therapy are discussed. Compared with the first edition, the chapters on targeted therapy with alpha- and beta-emitting radiopharmaceuticals and theranostics are completely new. Other chapters have been updated and revised as necessary. Radioisotope-based molecular imaging probes (radiopharmaceuticals) provide unprecedented insights into biochemistry and function in both normal and diseased states of living systems, with unbiased in vivo measurements of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology, including functional magnetic resonance imaging, can provide such high sensitivity and specificity at a tracer level. This book, written by an experienced radiochemist and scientist, offers valuable insights into the full range of applications of this technology.
Aiding researchers seeking to eliminate multi-step procedures, reduce delays in treatment and ease patient care, Cancer Theranostics reviews, assesses, and makes pertinent clinical recommendations on the integration of comprehensive in vitro diagnostics, in vivo molecular imaging, and individualized treatments towards the personalization of cancer treatment. Cancer Theranostics describes the identification of novel biomarkers to advance molecular diagnostics of cancer. The book encompasses new molecular imaging probes and techniques for early detection of cancer, and describes molecular imaging-guided cancer therapy. Discussion also includes nanoplatforms incorporating both cancer imaging and therapeutic components, as well as clinical translation and future perspectives. - Supports elimination of multi-step approaches and reduces delays in treatments through combinatorial diagnosis and therapy - Fully assesses cancer theranostics across the emergent field, with discussion of biomarkers, molecular imaging, imaging guided therapy, nanotechnology, and personalized medicine - Content bridges laboratory, clinic, and biotechnology industries to advance biomedical science and improve patient management
Cancer cells dedifferentiate with repect to cell function; their vascularity is more leaky, but perfusion is heterogenerously reduced, and interstitial fluid pressure is high, severely retarding delivery of agents from the blood. Targeted imaging is designed to produce a detectable difference between tissue that is visualized with single photon and positron emission tomography, magnetic resonance imaging, computed tomography, or ultrasonography. This book uniquely reports strategies for the application of molecular targeted imaging agents such as antibodies, peptides, receptors and contrast agents in the biologic grading of tumors, differential diagnosis of tumors, prediction of therapeutic response and monitoring tumor response to treatment. This book also describes updated information about the imaging of tumor angiogenesis, hypoxia, apoptosis and gene delivery as well as expression in the understanding and utility of tumor molecular biology for better cancer management.
Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.
From its introduction, oncological chemotherapy has been encumbered by poor selectivity because antiproliferative drugs are often toxic not only to tumor cells but also to important populations of the body’s non-neoplastic cells. Modern targeted therapies interact with defined molecules present on cancer cells, adding increased selectivity to their toxic effects. This book presents an integrated critical view on the theories, mechanisms, problems and pitfalls of the targeted therapy approach.
A comprehensive discussion of various types of nanoengineered biomaterials and their applications In Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field. The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems. Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable to biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targeting Perfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.