Download Free Molecular Host Plant Resistance To Pests Book in PDF and EPUB Free Download. You can read online Molecular Host Plant Resistance To Pests and write the review.

Sadasivam and Thayumanavan (both of the Center for Plant Molecular Biology, Tamil Nadu Agricultural U., India) catalogue known information regarding plant-borne chemicals that seem to be associated with pest resistance. They cover chemical structures, biosynthesis, bioactivity, mechanism of action.
Molecular Host Plant Resistance to Pests examines environmentally safe and integrated techniques for effective pest management. Offering more than 1500 references for further exploration of the topic, this reference details the bioactivity, biosynthetic pathways, mechanisms of action, and genetic regulation for improved methods of crop protection and analyzes host plant resistance mechanisms for development of enhanced insect management programs and agricultural ecosystems. This reference discusses the morphological and phenological bases of plant resistance and the current molecular studies on the chemistry, classification, and occurrence of a variety of chemical constituents.
Based on the understanding that tolerance to pest pressure increases with less crop stress, this book covers all aspects of the molecular mechanisms underlying insect resistance in field crops. Detailed descriptions, accompanied by numerous photographs and schematic drawings, are available for “hot topics” such as genetically engineered crops, crispr/cas9 system, insect pest resistance technology, host plant resistance, and other major breakthroughs. Specific case studies include, but not limit to, the use of insect resistant cultivars in IPMT programs, utilization of glucosinolate-myrosinase processes in oilseed crops, and role of genetic in rice breeding technology.
Introduction; Insect-plant interaction; Host-plant selection in Phytophagous insects; Mechanisms of resistance; Biochemistry of resistance; Factors affecting expression of resistance; Resistance programme; Genetics of resistance; Plant resistance in pest management.
What is plant resistance to insects? How is plant resistance to insects obtained? How can plant resistance to insects be utilized?
Historical overview of host plant resistance; Crop plant and insect diversity; Secondary plant metabolites for insect resistance; Insect - plant interactions; Host plant selection; Mechanisms of resistance; Factors affecting expression of resistance; Screening for insect resistance; Plant resistance and insect pest management; Genetics of resistance to insects; Breeding for resistance to insects.
Contributed articles.
This book offers a range of environmentally benign molecular mechanisms which are safer alternative strategies for effective insect pest management. In modern era of biotechnology, there has been much advancement in the field of molecular biology, where many more techniques have evolved which can be helpful in the field of pest management too. Plant resistance, development of transgenic plants, and many more techniques are being considered the panacea to pest problems. On the other hand, there are wide spread concerns of the safety of biotechnological interventions with nontarget organisms including humans. While the world stands divided on the ethical issues of these approaches and the many safety concerns, scientists believe that well thought of biotechnological interventions are probably the only safest ways possible for reducing pest attacks on crops. It explores various techniques and aspects related to molecular pathways for crop pest control. This book is a useful resource for postgraduate students and researchers of agriculture sciences, plant pathology and plant physiology. It is also useful for policy planners in agriculture.
This book reviews and synthesizes the recent advances in exploiting host plant resistance to insects, highlighting the role of molecular techniques in breeding insect resistant crops. It also provides an overview of the fascinating field of insect-plant relationships, which is fundamental to the study of host-plant resistance to insects. Further, it discusses the conventional and molecular techniques utilized/useful in breeding for resistance to insect-pests including back-cross breeding, modified population improvement methods for insect resistance, marker-assisted backcrossing to expedite the breeding process, identification and validation of new insect-resistance genes and their potential for utilization, genomics, metabolomics, transgenesis and RNAi. Lastly, it analyzes the successes, limitations and prospects for the development of insect-resistant cultivars of rice, maize, sorghum and millet, cotton, rapeseed, legumes and fruit crops, and highlights strategies for management of insect biotypes that limit the success and durability of insect-resistant cultivators in the field. Arthropod pests act as major constraints in the agro-ecosystem. It has been estimated that arthropod pests may be destroying around one-fifth of the global agricultural production/potential production every year. Further, the losses are considerably higher in the developing tropics of Asia and Africa, which are already battling severe food shortage. Integrated pest management (IPM) has emerged as the dominant paradigm for minimizing damage by the insects and non-insect pests over the last 50 years. Pest resistant cultivars represent one of the most environmentally benign, economically viable and ecologically sustainable options for utilization in IPM programs. Hundreds of insect-resistant cultivars of rice, wheat, maize, sorghum, cotton, sugarcane and other crops have been developed worldwide and are extensively grown for increasing and/or stabilizing crop productivity. The annual economic value of arthropod resistance genes developed in global agriculture has been estimated to be greater than US$ 2 billion Despite the impressive achievements and even greater potential in minimizing pest- related losses, only a handful of books have been published on the topic of host-plant resistance to insects. This book fills this wide gap in the literature on breeding insect- resistant crops. It is aimed at plant breeders, entomologists, plant biotechnologists and IPM experts, as well as those working on sustainable agriculture and food security.
Plant resistance to insects. Types and classification of resistance. Biochemical and morphological bases of resistance. Genetic factors affecting expession and stability of resistance. Environmental factors influencing the magnitude and expression of resistance. Insect behavior and plant resistance. Insects and plant pathogens. The pathosystem concept. The problem of variable pests. The use of plant incect models. Resistant varieties in pest management systems. Germplasm resources and needs. Breeding systems for resistance breeding for resistance in specific crops. Breeding approches in alfalfa. Breeding approaches in cassava. Breeding cotton for resistance to insect pests. Breeding approaches in rice. Breeding sorghums resistant to insects. Breeding forest trees resistance to insects. Breeding approaches in wheat. Future opportunities and directions.