Download Free Molecular Geometry Book in PDF and EPUB Free Download. You can read online Molecular Geometry and write the review.

Valence Shell Electron Pair Repulsion (VSEPR) theory is a simple technique for predicting the geometry of atomic centers in small molecules and molecular ions. This authoritative reference was written by Istvan Hartiggai and the developer of VSEPR theory, Ronald J. Gillespie. In addition to its value as a text for courses in molecular geometry and chemistry, it constitutes a classic reference for professionals. Starting with coverage of the broader aspects of VSEPR, this volume narrows its focus to a succinct survey of the methods of structural determination. Additional topics include the applications of the VSEPR model and its theoretical basis. Helpful data on molecular geometries, bond lengths, and bond angles appear in tables and other graphics.
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and transition metal clusters. The last chapter tackles the consequences of small, local variations in geometry. The text will be of great use to chemists who primarily deal with the properties of molecules and atoms.
This book is a pedagogical presentation aimed at advanced undergraduate students, beginning graduate students and professionals who are looking for an introductory text to the field of Distance Geometry, and some of its applications. This versions profits from feedback acquired at undergraduate/graduate courses in seminars and a number of workshops.
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
This book offers a gentle introduction to key elements of Geometric Algebra, along with their applications in Physics, Robotics and Molecular Geometry. Major applications covered are the physics of space-time, including Maxwell electromagnetism and the Dirac equation; robotics, including formulations for the forward and inverse kinematics and an overview of the singularity problem for serial robots; and molecular geometry, with 3D-protein structure calculations using NMR data. The book is primarily intended for graduate students and advanced undergraduates in related fields, but can also benefit professionals in search of a pedagogical presentation of these subjects.
After having read this book you will never see birds in the same way again. The unexpected patterns displayed by a bird’s body have been seen as bizarre events that demanded little attention or were described as ‘amazing curiosities’. None of these surprising features seem to be fortuitous. They appear to be an integral part of a rigid order and a coherent geometry, which is directed by simple gene interactions and molecular cascades occurring at various cellular levels, and at different times, during the organism’s development. A novel geometry unfolds in front of your eyes, giving the body configurations another meaning. Lima-de-Faria is Professor Emeritus of Molecular Cytogenetics at Lund University, Lund, Sweden. This is his sixth book dealing with the molecular organization of the chromosome and its implications for the understanding of the mechanisms responsible for biological evolution.
Emphasises on contemporary applications and an intuitive problem-solving approach that helps students discover the exciting potential of chemical science. This book incorporates fresh applications from the three major areas of modern research: materials, environmental chemistry, and biological science.
Designed to serve as a textbook for postgraduate students of physics and chemistry, this second edition improves the clarity of treatment, extends the range of topics, and includes more worked examples with a view to providing all the material needed for a course in molecular spectroscopy—from first principles to the very useful spectral data that comprise figures, charts and tables. To improve the conceptual appreciation and to help students develop more positive and realistic impressions of spectroscopy, there are two new chapters—one on the spectra of atoms and the other on laser spectroscopy. The chapter on the spectra of atoms is a detailed account of the basic principles involved in molecular spectroscopy. The chapter on laser spectroscopy covers some new experimental techniques for the investigation of the structure of atoms and molecules. Additional sections on interstellar molecules, inversion vibration of ammonia molecule, fibre-coupled Raman spectrometer, Raman microscope, supersonic beams and jet-cooling have also been included. Besides worked-out examples, an abundance of review questions, and end-of-chapter problems with answers are included to aid students in testing their knowledge of the material contained in each chapter. Solutions manual containing the complete worked-out solutions to chapter-end problems is available for instructors.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Modern approaches to the theoretical computation and experimental determination of NMR shielding tensors are described in twenty-nine papers based on lectures presented at the NATO ARW. All of the most popular computational methods are reviewed and recent progress is described in their application to chemical, biochemical, geochemical and materials science problems. Experimental studies on NMR shieldings in gases, liquids and solids are also included, with special emphasis placed upon the relationship between NMR shielding and geometric structure and upon tests of the accuracy of the various computational methods. Qualitative MO schemes and semiempirical approaches are also considered in light of the computational results. This is a valuable book for anyone interested in how the NMR shielding tensor can be used to determine the geometric and electronic structures of molecules and solids. (abstract) Modern methods for computing and measuring nuclear magnetic resonance shielding tensors are described in papers by a great number of leaders in the field. The most popular methods for quantum mechanically calculating NMR shielding tensors are reviewed and many applications of these methods are described to problems in chemistry, biochemistry, geochemistry and materials science. The focus of the papers is on the relationship of the NMR shielding tensor to the geometric and electronic structure of molecules or solids.