Download Free Molecular Electronics Science And Technology Book in PDF and EPUB Free Download. You can read online Molecular Electronics Science And Technology and write the review.

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
This volume explores the resurgence of interest in the field of molecular electronics in view of recent advances in such areas as molecular wires, molecular components, fabrication, and assemblies of molecular scale devices and their wiring on surfaces. It shows how molecular electronics offer scientists an opportunity to study and understand a new class of materials, on the molecular level and in isolation, while offering to engineers a new microelectronics technology.
This book presents an in-depth discussion on molecular electronics in an easy-to-understand manner, aiming at chemists, computer scientists, surface scientists, physicists, and applied mathematicians. Lighter overviews are provided for the science-minded layperson and the high tech entrepreneur in this nanoscale science. The author has included a detailed synthetic chemistry treasure chest, protocols of self-assembling routes for bottom-up fabrication atop silicon platforms, representative current-voltage and memory readouts from molecular devices, and overviews of present architectural and mathematical approaches to programming molecular computing machines. The investment and commercial insertion landscape is painted along with a “Who's Who” in the molecular electronics business space. Advice and forewarnings are provided in a practical yet witty manner for the aspiring academic corporate founder and the business CEO wannabe seeking to establish a high tech company while wading through the idiosyncratic morass of university personalities and university-owned intellectual property.
Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.
Molecular electronics refers to the possible future use of molecules as electronic circuit elements in signal-processing circuits molecules doing the chores of transistors and electronic switches a tantalizing idea that has recently become the target of many research programs around the world. Molec
Single-molecule electronics has evolved as a vibrant research field during the last two decades. The vision is to be able to create electronic components at the highest level of miniaturization-the single molecule. This book compiles and details cutting-edge research with contributions from chemists, physicists, theoreticians, and engineers. It cov
Klaus von Klitzing Max-Planck-Institut fur ̈ Festk ̈ orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany Already many Cassandras have prematurely announced the end of the silicon roadmap and yet, conventional semiconductor-based transistors have been continuously shrinking at a pace which has brought us to nowadays cheap and powerful microelectronics. However it is clear that the traditional scaling laws cannot be applied if unwanted tunnel phenomena or ballistic transport dominate the device properties. It is generally expected, that a combination of silicon CMOS devices with molecular structure will dominate the ?eld of nanoelectronics in 20 years. The visionary ideas of atomic- or molecular-scale electronics already date back thirty years but only recently advanced nanotechnology, including e.g. scanning tunneling methods and mechanically controllable break junctions, have enabled to make distinct progress in this direction. On the level of f- damentalresearch,stateofthearttechniquesallowtomanipulate,imageand probechargetransportthroughuni-molecularsystemsinanincreasinglyc- trolled way. Hence, molecular electronics is reaching a stage of trustable and reproducible experiments. This has lead to a variety of physical and chemical phenomena recently observed for charge currents owing through molecular junctions, posing new challenges to theory. As a result a still increasing n- ber of open questions determines the future agenda in this ?eld.
An introduction to the interdisciplinary subject of molecular electronics, revised and updated The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.
Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.