Download Free Molecular Ecology And Evolution Approaches And Applications Book in PDF and EPUB Free Download. You can read online Molecular Ecology And Evolution Approaches And Applications and write the review.

The past 25 years have witnessed a revolution in the way ecologists and evolutionary biologists approach their disciplines. Modern molecular techniques are now reshaping the spectrum of questions that can be addressed while studying the mechanisms and consequences of the ecology and evolution of living organisms. "Molecular Ecology and Evolution: Approaches and Applications" describes, from a molecular perspective, several methodological and technical approaches used in the fields of ecology, evolution, population biology, molecular systematics, conservation genetics, and development. Modern techniques are introduced, and older, more classic ones refined. The advantages, limitations, and potentials of each are discussed in detail, and thereby illustrate the widening range of cross-field research and applications which this modern technology is stimulating. This book will serve as an important textbook for graduate and advanced undergraduate students, and as a key reference work for researchers
Four years ago we edited a volume of 36 papers entitled Molecular Approaches to Ecology and Evolution (Schierwater et ai. , 1994), in which we attempted to put to gether a diverse array of papers that demonstrated the impact that the technologi cal revolution ofmolecular biology has had on the field ofevolutionary biologyand ecology. The present volume borrows from that theme but attempts to focus more sharply on the impact that molecular biology has had on our understanding of dif ferent hierarchical levels important in evolutionary and ecological studies. Because DNA sequence variation is at the heart ofeverypaper in the present volume, we feel it necessary to examine how DNA has affected study at various levels of biological organization. The majority of the chapters in the present volume follow themes es tablished in the earlier volume; all chapters by authors in the previous volume are either fully updated or entirely new and expand into areas that we felt were impor tant for a more complete understanding of the impact of DNA technology on ecol ogy and evolution. The collection of papers in this volume cover a diverse array of ecological and evolutionary questions and demonstrates the breadth of coverage molecular tech nology has imparted on modern evolutionary biology. There are also a broad range of hierarchical questions approached by the 17 papers in this volume.
Molecular approaches have opened new windows on a host of ecological and evolutionary disciplines, ranging from population genetics and behavioral ecology to conservation biology and systematics. Molecular Markers, Natural History and Evolution summarizes the multi-faceted discoveries about organisms in nature that have stemmed from analyses of genetic markers provided by polymorphic proteins and DNAs. The first part of the book introduces rationales for the use of molecular markers, provides a history of molecular phylogenetics, and describes a wide variety of laboratory methods and interpretative tools in the field. The second and major portion of the book provides a cornucopia of biological applications for molecular markers, organized along a scale from micro-evolutionary topics (such as forensics, parentage, kinship, population structure, and intra-specific phylogeny) to macro-evolutionary themes (including species relationships and the deeper phylogenetic structure in the tree of life). Unlike most prior books in molecular evolution, the focus is on organismal natural history and evolution, with the macromolecules being the means rather than the ends of scientific inquiry. Written as an intellectual stimulus for the advanced undergraduate, graduate student, or the practicing biologist desiring a wellspring of research ideas at the interface of molecular and organismal biology, this book presents material in a manner that is both technically straightforward, yet rich with concepts and with empirical examples from the world of nature.
The incorporation of molecular methods in ecological research has added an exciting new dimension to conventional studies, and opened windows into previously intractable areas of research, at the interface between ecology and genetics. Using these new methods it has now become routine to use genetic markers to study ecological phenomena, from molecular sexing of individuals and parentage of offspring, through to population structure of species and phylogenetic relationships of taxa. These methods have stimulated an explosion of empirical and analytical developments in molecular ecology, which have in turn, increasingly attracted students and professional biologists eager to employ them in their studies. Molecular Methods in Ecology traces the development of molecular ecology by reviewing basic molecular biological techniques and earlier methods such as protein electrophoresis, DNA-DNA hybridisation, restriction analysis of DNA, and DNA fingerprinting. Later chapters review methods using newer classes of markers such as microsatellites, introns, MHC, SSRs and AFLP markers in plants and molecular sexing in animals. The strengths and limitations of methods are discussed and guidance is provided in selecting the most appropriate methods for particular problems in ecology. This book will provide both postgraduates and researchers with a guide to choosing and employing appropriate methodologies for successful research in the field of molecular ecology. Provides up-to-date summaries of the latest molecular approaches in this rapidly expanding field. Gives guidance on the appropriate choice of methods for particular problems in ecology, and their strengths and limitations. Provides brief laboratory protocols for each molecular method and summaries of software available for analysis of data in molecular ecology. Outlines examples of the latest research results from studies of both plants and animals, integrated within the framework of molecular ecology.
Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume. Ecological Genomics covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. Ecological Genomics covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation.
Phylogenetic comparative approaches are powerful analytical tools for making evolutionary inferences from interspecific data and phylogenies. The phylogenetic toolkit available to evolutionary biologists is currently growing at an incredible speed, but most methodological papers are published in the specialized statistical literature and many are incomprehensible for the user community. This textbook provides an overview of several newly developed phylogenetic comparative methods that allow to investigate a broad array of questions on how phenotypic characters evolve along the branches of phylogeny and how such mechanisms shape complex animal communities and interspecific interactions. The individual chapters were written by the leading experts in the field and using a language that is accessible for practicing evolutionary biologists. The authors carefully explain the philosophy behind different methodologies and provide pointers – mostly using a dynamically developing online interface – on how these methods can be implemented in practice. These “conceptual” and “practical” materials are essential for expanding the qualification of both students and scientists, but also offer a valuable resource for educators. Another value of the book are the accompanying online resources (available at: http://www.mpcm-evolution.com), where the authors post and permanently update practical materials to help embed methods into practice.
The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility.
Recent advances in molecular genetics and genomics have been embraced by many in natural resource conservation. Today, several major conservation and management journals are now using 'genetics' editors to deal solely with the influx of manuscripts that employ molecular data. The editors have attempted to synthesize some of the major uses of molecular markers in natural resource management in a book targeted not only at scientists but also at individuals actively making conservation and management decisions. To that end, the text features contributors who are major figures in molecular ecology and evolution - many having published books of their own. The aim is to direct and distil the thoughts of these outstanding scientists by compiling compelling case histories in molecular ecology as they apply to natural resource management.
DNA can be extracted and sequenced from a diverse range of biological samples, providing a vast amount of information about evolution and ecology. The analysis of DNA sequences contributes to evolutionary biology at all levels, from dating the origin of the biological kingdoms to untangling family relationships. An Introduction to Molecular Evolution and Phylogenetics presents the fundamental concepts and intellectual tools you need to understand how the genome records information about evolutionary past and processes, how that information can be "read", and what kinds of questions we can use that information to answer. Starting with evolutionary principles, and illustrated throughout with biological examples, it is the perfect starting point on the journey to an understanding of the way molecular data is used in modern biology. Online Resource Centre The Online Resource Centre features: For registered adopters of the book: - Class plans for one-hour hands-on sessions associated with each chapter - Figures from the textbook to view and download
Molecular Ecology provides a comprehensive introduction to the many diverse aspects of this subject. The book unites theory with examples from a wide range of taxa in a logical and progressive manner, and its accessible writing style makes subjects such as population genetics and phylogenetics highly comprehensible to its readers. The first part of the book introduces the essential underpinnings of molecular ecology, starting with a review of genetics and a discussion of the molecular markers that are most frequently used in ecological research. This leads into an overview of population genetics in ecology. The second half of the book then moves on to specific applications of molecular ecology, covering phylogeography, behavioural ecology and conservation genetics. The final chapter looks at molecular ecology in a wider context by using a number of case studies that are relevant to various economic and social concerns, including wildlife forensics, agriculture, and overfishing * comprehensive overview of the different aspects of molecular ecology * attention to both theoretical and applied concerns * accessible writing style and logical structure * numerous up-to-date examples and references This will be an invaluable reference for those studying molecular ecology, population genetics, evolutionary biology, conservation genetics and behavioural ecology, as well as researchers working in these fields.