Download Free Molecular Design Synthesis And Characterization Of Polymeric Nonlinear Optical Materials Book in PDF and EPUB Free Download. You can read online Molecular Design Synthesis And Characterization Of Polymeric Nonlinear Optical Materials and write the review.

The research accomplished in this project consists of four tasks each dealing with a different class of nonlinear optical (NLO) materials. Task (I): Second-order nonlinear optical materials. We developed new chromophores and processing to produce electro-optic materials with enhanced optical transparency towards the visible (>=700 nm), increased chemical and thermal stability and stability of poled alignment for 1000 hours at 100 deg C. Several approaches showed promises and we accomplished a great deal. Also, we developed polyurethane cross-linking polymers to produce thermally stable poling alignment in both molecular-ionic type and neutral type second-order chromophores. In both cases stability up to 1000 hours at 100 deg C was achieved. In another approach, in collaboration with Professor Shea of University of California, Irvine, we have employed ormosils to produce stable poled alignments. Task (II): Third-order nonlinear optical materials. We synthesized a group of phosphoylides containing a polarizable P atom and investigated their X(3) behavior via femtosecond Kerr gate measurements. By using optically heterodyned and phase-tuned Kerr gate techniques, we obtained both the signs and the magnitudes of the real and the imaginary components of X(3).
Molecular Dynamics in Restricted Geometries Edited by Joseph Klafter and J. M. Drake This investigation of the chemistry and physics of complex systems focuses on the role of spatial restrictions on molecular movement. A practical source-book for researchers in chemical physics, chemical engineering, and condensed matter physics, and for graduate students in these fields, it covers a broad range of topics and critically evaluates methods as they are employed. Among the many topics it covers are: relaxation and diffusion in restricted geometries, excitation energy transfer and photoinduced electron transfer phenomena in some confined systems, electron excitation transport in micelles, polymers and multilayers, and electron excitation transport on polymer chains. 1989 (0 471-60176-4) 437 pp.
During the project period significant progress were made in design, synthesis and analysis of a number of electroactive polymers. Polymers were assessed for their structural features, electronic and optical properties and their application in molecular electronic devices. Substantial progress during the project period has led to expansion of research activities into a number of different areas including conducting monolayers, 3rd order nonlinear optical polymers and newly designed materials with second and 3rd nonlinear optical properties.
Photonics, the counterpart of electronics, involves the usage of Photons instead of electrons to process information and perform various switching operations. Photonics is projected to be the technology of the future because of the gain in speed, processing and interconnectivity of network. Nonlinear optical processes will play the key role in photonics Where they can be used for frequency conversion, optical switching and modulation. Organic molecules and polymers have emerged as a new class of highly promising nonlinear optical materials Which has captured the attention of scientists world wide. The organic systems offer the advantage of large nonresonant nonlinearities derived from the 1T electrons contribution, femtosecond response time and the flexibility to modify their molecular structures. In addition, organic polymers can easily be fabricated in various device structures compatible with the fiber-optics communication system. The area of nonlinear optics of organic molecules and polymers offers exciting opportunities for both fundamental research and technologic development. It is truly an interdisciplinary area. This proceeding is the outcome of the first NATO Advanced Research WOrkshop in this highly important area. The objective of the workshop was to provide a forum for scientists of varying background from both universities and industries to come together and interface their expertize. The scope of the workshop was multidisciplinary with active participations from Chemists, physicists, engineers and materials scientists from many countries.