Download Free Molecular Collisions In The Interstellar Medium Book in PDF and EPUB Free Download. You can read online Molecular Collisions In The Interstellar Medium and write the review.

In the interstellar medium - the space between the stars in galaxies - new stars are born from material that is replenished by the debris ejected by stars when they die. This book is a comprehensive manual for studying the collisional and radiative processes observed in the interstellar medium. This second edition has been thoroughly updated and extended to cover related topics in radiation theory. It considers the chemistry of the interstellar medium both at the present epoch and in the early Universe, and discusses the physics and chemistry of shock waves. The methods of calculation of the rates of collisional excitation of interstellar molecules and atoms are explained, emphasising the quantum mechanical method. This book will be ideal for researchers involved in the interstellar medium and star formation, and physical chemists specialising in collision theory or in the measurement of the rates of collision processes.
This work provides a comprehensive overview of our theoretical and observational understanding of the interstellar medium of galaxies. With emphasis on the microscopic physical and chemical processes in space, and their influence on the macroscopic structure of the interstellar medium of galaxies, the book includes developments in this area of molecular astrophysics. The various heating, cooling, and chemical processes relevant for the rarefied gas and submicron-sized dust grains that constitute the interstellar medium are discussed in detail. This provides a firm foundation for an in-depth understanding of the ionized, neutral atomic, and molecular phases of the interstellar medium. The physical and chemical properties of large polycyclic aromatic hydrocarbon molecules and their role in the interstellar medium are highlighted, and the physics and chemistry of warm and dense photodissociation regions are discussed. This is an invaluable reference source for advanced undergraduate and graduate students, and research scientists.
This third edition of The Physics of the Interstellar Medium continues to introduce advanced undergraduates to the fundamental processes and the wide range of disciplines needed to understand observations of the interstellar medium and its role in the Milky Way galaxy. The book is suitable for undergraduate students studying physics, astronomy, and astrophysics. The book also provides concise and straightforward discussions of interstellar physics and chemistry that are useful for more experienced readers. The book leads readers through the range of physical processes operating on both large and small scales that occur in the interstellar medium. It explores the relationship between the dusty, tenuous gas in interstellar space and the formation of stars and planets. This new edition also describes exciting developments in the field of astrochemistry and its interaction with interstellar physics, and the roles played by interstellar dust grains in interstellar physics and chemistry. Simple models in each chapter, together with problems at the end of each chapter, encompass interdisciplinary applications in atomic, molecular, solid state, and surface physics, and gas dynamics. This popular textbook provides a useful overview and grounding in the study of the interstellar medium and brings insight into many aspects of physics. Features An authoritative textbook in the field at this academic level Provides a wide introduction to the interstellar medium whilst remaining accessible and concise Revised throughout, presenting a modern understanding of the interstellar medium
Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, The Interstellar Medium is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.
The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.
Sun Kwok explains the fundamental physics and chemistry required for understanding the interstellar medium. The textbook is interlaced with mathematical derivations that are clean, elegant and easily understandable by those with an undergraduate background in physics.