Download Free Molecular Catalysts For Co2 Fixation Reduction Book in PDF and EPUB Free Download. You can read online Molecular Catalysts For Co2 Fixation Reduction and write the review.

This dissertation details efforts in designing and tuning catalysts that have the ability to engage CO2 through a metal center and functional groups in the second coordination sphere. We attempted to improve a dinuclear copper complex that has the ability to engage CO2 through two metal centers and was previously reported as a CO2 reduction catalysts. Electron donating substitutions were made on the ligands in attempts to improve rates for the electrocatalytic reduction of CO2. These modifications led to changes in the reduction potentials and the structures of the complexes, but did not produce significant improvements in turnover frequencies or overpotentials for CO2 reduction. We attempted to improve rhodium disphosphine catalysts for the conversion of CO2 to HCOO-- by introducing ligands with proton relays. Several [Rh(P2N2)2]+ complexes were synthesized. They were structurally characterized as square planar with slight tetrahedral distortions and exhibited a reversible 2e-- Rh(I/--I) redox couple in voltammetric studies. We synthesized the HRh(P2N2)2 complexes and structurally characterized them as having distorted trigonal bipyramidal geometry. The hydricities of several of the HRh(P2N2)2 complexes were measured using equilibration experiments monitored by 31P NMR. The HRh(P2N2)2 complexes are among the most hydridic complexes the 16 e-- M(diphosphine)2 class. We compared the activity of the [Rh(P2N2)2]+ complexes for catalytic CO2 hydrogenation to formate to a [Rh(diphosphine)2]+ complex of a similar hydricity that lacked pendant amines. We found that, despite the strong reducing power of the HRh(P2N2)2 complexes, the non-pendant-amine-containing Rh complex was the best catalyst for CO2 hydrogenation. We also tested these complexes for their electrochemical CO2 reduction activity. While these complexes are energetic enough to react with CO2 when reduced, they are unstable under the high potentials necessary for their reduction. We tested Ru pincer complexes that are known to hydrogenate esters via a mechanism that involves co-operative metal-ligand interactions for their ability to reduce CO2 and methylformate electrochemically. We also synthesized and tested an Fe analogue of these complexes for electrochemical reactivity. We found that these complexes are promising candidates for further study as CO2 reduction catalysts.
The thesis presented here is focused on two aspects of transition metal mediated catalysis research- one is designing homogeneous rhenium complex with suitable ligand framework for electrochemical reduction of carbon dioxide to address dual issues regarding green house gas removal and hydrocarbon fuel production; another being fabrication of heterogeneous mesoporous manganese oxide to catalyze organic fine chemical synthesis under aerobic atmospheric condition. The quest for conquering fossil fuel energy dependence leads us to develop methodologies for using CO2 as a renewable resource. Electrochemical reduction of CO2 has been considered as a promising procedure for this purpose. Coordination complexes of rhenium and α-diimine ligands are known to resolve the bottleneck of activating the thermally stable and kinetically inert CO2 molecule. In the beginning of the thesis, I have described the development of a new family of α-diimine ligand coordinated rhenium complexes that exhibits remarkable catalytic activity compared to the existing list of analogous systems. The reported compounds in this work consist of three different ligand systems- quinoline, naphthyridine and benzonaphthyridine bound to pyridine or thiazole moieties in the coordination sphere. It has been shown that rate of CO2 reduction and turn over frequency depends significantly on the nature of the ligands. Overall, complexes that have pyridine outperform those having thiazole, with the benzonaphthyridine complexes showing superior activity with rate constant and catalytic turnover of 103 orders. The second part of my thesis describes the design and application of thermally stable and tunable mesoporous manganese oxide to catalyze coupling and aromatization reactions. From the viewpoint of green chemistry, synthesizing valuable organic molecules by using no or minimum additive and maintaining mild reaction condition is of utter importance. We demonstrate synthesis of aromatic nitrogen containing heterocyclic molecules from their non aromatic counterparts by employing robust and inexpensive manganese oxide catalyst in the presence of no other oxidant/additive but air. The same manganese oxide material when fabricated to act as a support for copper oxide catalyst exhibited excellent efficiency for C-O, C-N and C-S bond formation in Ullmann type reaction. Not only the synthetic methodology but the underlying mechanism and role of lattice oxygen present in the structure of catalyst are explained in details following experimental and theoretical studies. The catalytic protocols discussed here have several advantages over the already reported procedures in terms of product separation, reusability of the catalyst, absence of additive, water as by product and air as the terminal oxidant.
A guide to the fascinating application of CO2 as a building block in organic synthesis This important book explores modern organic synthesis’ use of the cheap, non-toxic and abundant chemical CO2as an attractive C1 building block. With contributions from an international panel of experts, CO2 as a Building Block in Organic Synthesis offers a review of the most important reactions which use CO2 as a building block in organic synthesis. The contributors examine a wide-range of CO2 reactions including methylation reactions, CH bond functionalization, carboxylation, cyclic carbonate synthesis, multicomponent reactions, and many more. The book reviews the most recent developments in the field and also: Presents the most important reactions like CH-bond functionalization, carboxylation, carbonate synthesis and many more Contains contributions from an international panel of experts Offers a comprehensive resource for academics and professionals in the field Written for organic chemists, chemists working with or on organometallics, catalytic chemists, pharmaceutical chemists, and chemists in industry, CO2 as Building Block in Organic Synthesis contains an analysis of the most important reactions which use CO2 as an effective building block in organic synthesis.
The efficient chemical conversion of carbon dioxide (CO2) to useful fuels remains an unsolved and intriguing scientific problem. One promising approach that has emerged in the past 30 years is to leverage electrocatalysts in the conversion of CO2 to commodity chemicals. If the requisite electrons for this process are obtained from renewable sources (e.g., solar, wind, hydroelectric, etc.), a carbon-neutral process may be envisioned. The feasibility of large-scale systems that can facilitate electrocatalytic conversion depends on the development of active, selective, and affordable catalysts. Many electrocatalysts have been developed that can mediate these processes, including heterogeneous and homogenous transition-metal compounds. In the latter group, several first-row transition metal catalysts have been reported with manganese, iron, cobalt, nickel and copper metal centers. Recent work focused on Mn(I)-centered catalysts is discussed here. Utilizing the extensively-investigated MnBr(2,2'-bipyridine)(CO)3 system as a template, several modifications within the primary coordination sphere have recently been reported, which include: 1) replacement of one pyridine in the 2,2'-bipyridine (bpy) backbone of MnBr(bpy)(CO)3 with an N-heterocyclic carbene (NHC) moiety; 2) substitution of the axial bromine ligand with other pseudo-halogen ligands, including CN and NCS; and 3) modulation of the ligand pi-acidity. The impact and efficacy of these modifications is reviewed.
Homogeneous and Heterogeneous Catalysis
Photoelectrocatalysis: Fundamentals and Applications presents an in-depth review of the topic for students and researchersworking on photoelectrocatalysis-related subjects from pure chemistry to materials and environmental chemistry inorder to propose applications and new perspectives. The main advantage of a photoelectrocatalytic process is the mildexperimental conditions under which the reactions are carried out, which are often possible at atmospheric pressure androom temperature using cheap and nontoxic solvents (e.g., water), oxidants (e.g., O2 from the air), catalytic materials (e.g.,TiO2 on Ti layer), and the potential exploitation of solar light. This book presents the fundamentals and the applications of photoelectrocatalysis, such as hydrogen production fromwater splitting, the remediation of harmful compounds, and CO2 reduction. Photoelectrocatalytic reactors and lightsources, in addition to kinetic aspects, are presented along with an exploration of the relationship between photocatalysisand electrocatalysis. In addition, photocorrosion issues and the application of selective photoelectrocatalytic organictransformations, which is now a growing field of research, are also reported. Finally, the advantages/disadvantages andfuture perspectives of photoelectrocatalysis are highlighted through the possibility of working at a pilot/industrial scale inenvironmentally friendly conditions. Presents the fundamentals of photoelectrocatalysis Outlines photoelectrocatalytic green chemistry Reviews photoelectrocatalytic remediation of harmful compounds, hydrogen production, and CO2 reduction Includes photocorrosion, photoelectrocatalytic reactors, and modeling along with kinetic aspects
Over the past decade the topic of energy and environment has been ackno- edged among many people as a critical issue to be solved in 21st century since the Kyoto Protocol came into e?ect in 1997. Its political recognition was put forward especially at Heiligendamm in 2007, when the e?ect of carbon dioxide emission and its hazard in global climate were discussed and shared univ- sallyascommonknowledge.Controllingtheglobalwarmingintheeconomical framework of massive development worldwide through this new century is a very challenging problem not only among political, economical, or social c- cles but also among technological or scienti?c communities. As long as the humans depend on the combustion of fossil for energy resources, the waste heat exhaustion and CO emission are inevitable. 2 In order to establish a new era of energy saving and environment benign society, which is supported by technologies and with social consensus, it is important to seek for a framework where new clean energy system is inc- porated as infrastructure for industry and human activities. Such a society strongly needs innovative technologies of least CO emission and e?cient en- 2 ergy conversion and utilization from remaining fossil energies on the Earth. Energy recycling system utilizing natural renewable energies and their c- version to hydrogen may be the most desirable option of future clean energy society. Thus the society should strive to change its energy basis, from foss- consuming energy to clean and recycling energy.
Fossil fuels still need to meet the growing demand of global economic development, yet they are often considered as one of the main sources of the CO2 release in the atmosphere. CO2, which is the primary greenhouse gas (GHG), is periodically exchanged among the land surface, ocean, and atmosphere where various creatures absorb and produce it daily. However, the balanced processes of producing and consuming the CO2 by nature are unfortunately faced by the anthropogenic release of CO2. Decreasing the emissions of these greenhouse gases is becoming more urgent. Therefore, carbon sequestration and storage (CSS) of CO2, its utilization in oil recovery, as well as its conversion into fuels and chemicals emerge as active options and potential strategies to mitigate CO2 emissions and climate change, energy crises, and challenges in the storage of energy.
Secondly, molecular catalysts for CO2 reduction are studied with the aim of understanding how catalytic activity is influenced by the nature of the monodentate ligands. Whether efficient catalysis requires the routinely employed but photolabile CO ligand is explored. The electrocatalytic reduction of CO2 by Ru-bipyridyl compounds is investigated and their visible-light photochemistry is also discussed.