Download Free Molecular Biology Of Rna Book in PDF and EPUB Free Download. You can read online Molecular Biology Of Rna and write the review.

RNA plays a central, and until recently, somewhat underestimated role in the genetics underlying all forms of life on earth. This versatile molecule not only plays a crucial part in the synthesis of proteins from a DNA template, but is also intrinsically involved in the regulation of gene expression, and can even act as a catalyst in the form of a ribozyme. This latter property has led to the hypothesis that RNA - rather than DNA - could have played an essential part in the origin of life itself. This landmark text provides a systematic overview of the exciting and rapidly moving field of RNA biology. Key pioneering experiments, which provided the underlying evidence for what we now know, are described throughout, while the relevance of the subject to human disease is highlighted via frequent boxes. For the second edition of Molecular Biology of RNA, more introductory material has been incorporated at the beginning of the text, to aid students studying the subject for the first time. Throughout the text, new material has been included - particularly in relation to RNA binding domains, non-coding RNAs, and the connection between RNA biology and epigenetics. Finally, a new closing chapter discusses how exciting new technologies are being used to explore current topical areas of research.
RNA plays a central, and until recently, somewhat underestimated role in the genetics underlying all forms of life on earth. This versatile molecule not only plays a crucial part in the synthesis of proteins from a DNA template, but is also intrinsically involved in the regulation of gene expression, and in catalysis.This landmark text provides a systematic overview of the exciting and rapidly moving field of RNA biology. For the secondedition of Molecular Biology of RNA more introductory material has been incorporated at the beginning of the text, while new material has been included throughout - particularly in relation to RNA bindingdomains, non-coding RNAs, and the connection between RNA biology and epigenetics. Finally, a new closing chapter discusses how exciting new technologies are being used to explore current topical areas of research.
Of RNA biology as part of a broader programme of study.
Oksana Ableitner offers a practical, clearly structured and easy to understand introduction to complicated definitions and structures in chemistry and molecular biology for work in the molecular biology laboratory. The author is guided by her experience in working with students and uses many illustrations to visualize abstract knowledge. An understanding of this matter is an essential basis for successful work with DNA and RNA in order to ensure high quality results. For responsible activities in application - such as genetic research or the determination of various pathogens - it is essential to be confident in dealing with the basics of these sensitive, fast and specific analytical methods. This Springer essential is a translation of the original German 2nd edition essentials, Einführung in die Molekularbiologie by Oksana Ableitner, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the serviceDeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
"A Subject Collection from Cold Spring Harbor Perspectives in Biology."
Molecular Biology of RNA: New Perspectives provides an overview of the developments in RNA research as well as the approaches, strategies, and methodologies used. Most of the contributing authors in the present volume participated in the Fifth Stony Brook Symposium entitled "New Perspectives on the Molecular Biology of RNA" in May 1986. The text is organized into six parts. Part I contains papers dealing with RNA as an enzyme. Part II presents studies on RNA splicing. Part III examines RNA viruses while Part IV focuses on the role of RNA in DNA replication. Part V is devoted to the structure, function, and isolation of RNA. Finally, Part VI takes up the role of RNA in regulation and repression. This volume will help provide new direction and insight for those already working on the subject and will serve as a useful guide to those about to start research in the molecular biology of RNA.
This contributed volume offers a comprehensive and detailed overview of the various aspects of long non-coding RNAs and discusses their emerging significance. Written by leading experts in the field, it motivates young researchers around the globe, and offers graduate and postgraduate students fascinating insights into genes and their regulation in eukaryotes and higher organisms.
RNA molecules could function as catalysts. --
Recent insight into the transcripts generated from the mammalian genome (i.e. the transcriptome) has revealed that transcription is a far more complex phenomenon than previously thought. In RNA: Methods and Protocols, expert researchers provide the procedures and methods used to describe the structure of messenger RNAs and non-coding RNAs that are transcribed by RNA polymerase II as the immediate gene products in mammalian cells. Focused on the structure of the RNA products of “gene X” and the mapping of proteins associated with these RNAs, the volume presents appropriate information for non-specialists in RNA biology. Written in the highly successful Methods in Molecular BiologyTM series format, many chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, RNA: Methods and Protocols views the transcriptional landscape with an appreciation for the role that proteins play in the processing and interpretation of genetic information in an attempt to further our crucial knowledge of the many products and sophisticated regulatory networks that result from it.