Download Free Molecular Biology Of Bacterial Viruses Book in PDF and EPUB Free Download. You can read online Molecular Biology Of Bacterial Viruses and write the review.

The Molecular Biology of Viruses is a collection of manuscripts presented at the Third Annual International Symposium of the Molecular Biology of Viruses, held in the University of Alberta, Canada on June 27-30, 1966, sponsored by the Faculty of Medicine of the University of Alberta. This book is organized into eight parts encompassing 36 chapters that emphasize the biosynthetic steps involved in polymer duplication. The first two parts explore the specialized processes of the cycle of virulent and temperate bacteriophage multiplication. These parts also deal with the production, regulation of development, and selectivity of these bacteriophages. The subsequent two parts look into the heterozygosity, mutation, structure, function, and mode of infection of single-stranded DNA and RNA bacteriophages. The discussions then shift to the biological and physicochemical aspects, biosynthesis, translation, genetics, and replication of mammalian DNA and RNA viruses. The concluding parts describe the homology, interaction, functions, mechanism of transformation, metabolism, and carcinogenic activity of oncogenic viruses. This book is of great benefit to biochemists, biophysicists, geneticists, microbiologists, and virologists.
Bacterial genetics has become one of the cornerstones of basic and applied microbiology and has contributed key knowledge for many of the fundamental advances of modern biology. The second edition of this comprehensive yet concise text, first published in 1981, has been thoroughly updated and redesigned to account for new developments in this rapidly expanding field. All of the major topics in modern bacterial and bacteriophage genetics are presented, among them mutations and mutagenesis, genetics of T4 bacteriophage and other intemperate and temperate phages, transduction, transformation, conjugation and plasmids, recombination and repair, probability laws for prokaryote cultures, as well as applied bacterial genetics.
Viruses interact with host cells in ways that uniquely reveal a great deal about general aspects of molecular and cellular structure and function. Molecular and Cellular Biology of Viruses leads students on an exploration of viruses by supporting engaging and interactive learning. All the major classes of viruses are covered, with separate chapters for their replication and expression strategies, and chapters for mechanisms such as attachment that are independent of the virus genome type. Specific cases drawn from primary literature foster student engagement. End-of-chapter questions focus on analysis and interpretation with answers being given at the back of the book. Examples come from the most-studied and medically important viruses such as HIV, influenza, and poliovirus. Plant viruses and bacteriophages are also included. There are chapters on the overall effect of viral infection on the host cell. Coverage of the immune system is focused on the interplay between host defenses and viruses, with a separate chapter on medical applications such as anti-viral drugs and vaccine development. The final chapter is on virus diversity and evolution, incorporating contemporary insights from metagenomic research. Key selling feature: Readable but rigorous coverage of the molecular and cellular biology of viruses Molecular mechanisms of all major groups, including plant viruses and bacteriophages, illustrated by example Host-pathogen interactions at the cellular and molecular level emphasized throughout Medical implications and consequences included Quality illustrations available to instructors Extensive questions and answers for each chapter
Viruses: Molecular Biology, Host Interactions, and Applications to Biotechnology provides an up-to-date introduction to human, animal and plant viruses within the context of recent advances in high-throughput sequencing that have demonstrated that viruses are vastly greater and more diverse than previously recognized. It covers discoveries such as the Mimivirus and its virophage which have stimulated new discussions on the definition of viruses, their place in the current view, and their inherent and derived 'interactomics' as defined by the molecules and the processes by which virus gene products interact with themselves and their host's cellular gene products. Further, the book includes perspectives on basic aspects of virology, including the structure of viruses, the organization of their genomes, and basic strategies in replication and expression, emphasizing the diversity and versatility of viruses, how they cause disease and how their hosts react to such disease, and exploring developments in the field of host-microbe interactions in recent years. The book is likely to appeal, and be useful, to a wide audience that includes students, academics and researchers studying the molecular biology and applications of viruses - Provides key insights into recent technological advances, including high-throughput sequencing - Presents viruses not only as formidable foes, but also as entities that can be beneficial to their hosts and humankind that are helping to shape the tree of life - Features exposition on the diversity and versatility of viruses, how they cause disease, and an exploration of virus-host interactions
A key resource for FRCPath and MRCP trainees, mapped to the current curriculum, using over 300 exam-style Q&A.
Based on the author's experiences in teaching virology for more than 35 years, this new textbook enables readers to develop a deep understanding of fundamental virology by emphasizing principles and discussing viruses in the context of virus families.
A renaissance of virus research is taking centre stage in biology. Empirical data from the last decade indicate the important roles of viruses, both in the evolution of all life and as symbionts of host organisms. There is increasing evidence that all cellular life is colonized by exogenous and/or endogenous viruses in a non-lytic but persistent lifestyle. Viruses and viral parts form the most numerous genetic matter on this planet.
Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.