Download Free Molecular Basis Of Mitochondrial Pathology Book in PDF and EPUB Free Download. You can read online Molecular Basis Of Mitochondrial Pathology and write the review.

The field of mitochondrial diseases is currently one of the rapidly growing fields of research in cell and molecular biology. This volume encompasses the latest development in this field of research. The chapters cover topics in a wide range of disciplines including biophysics, biochemistry, cell and molecular biology, molecular genetics, and clinical medicine. - Summarizes growing evidence of the role of mitochondria in a large number of pathological conditions - Brings together different approaches toward understanding mitochondria diseases - Molecular and cellular biology - Clinical physiology and medicine - Details the crucial role this organelle plays in genetic regulation of various biological functions
As the molecular basis of human disease becomes better characterized, and the implications for understanding the molecular basis of disease becomes realized through improved diagnostics and treatment, Molecular Pathology, Second Edition stands out as the most comprehensive textbook where molecular mechanisms represent the focus. It is uniquely concerned with the molecular basis of major human diseases and disease processes, presented in the context of traditional pathology, with implications for translational molecular medicine. The Second Edition of Molecular Pathology has been thoroughly updated to reflect seven years of exponential changes in the fields of genetics, molecular, and cell biology which molecular pathology translates in the practice of molecular medicine. The textbook is intended to serve as a multi-use textbook that would be appropriate as a classroom teaching tool for biomedical graduate students, medical students, allied health students, and others (such as advanced undergraduates). Further, this textbook will be valuable for pathology residents and other postdoctoral fellows that desire to advance their understanding of molecular mechanisms of disease beyond what they learned in medical/graduate school. In addition, this textbook is useful as a reference book for practicing basic scientists and physician scientists that perform disease-related basic science and translational research, who require a ready information resource on the molecular basis of various human diseases and disease states. - Explores the principles and practice of molecular pathology: molecular pathogenesis, molecular mechanisms of disease, and how the molecular pathogenesis of disease parallels the evolution of the disease - Explains the practice of "molecular medicine and the translational aspects of molecular pathology - Teaches from the perspective of "integrative systems biology - Enhanced digital version included with purchase
Essential Concepts in Molecular Pathology, Second Edition, offers an introduction to molecular genetics and the "molecular" aspects of human disease. The book illustrates how pathologists harness their understanding of these entities to develop new diagnostics and treatments for various human diseases. This new edition offers pathology, genetics residents, and molecular pathology fellows an advanced understanding of the molecular mechanisms of disease that goes beyond what they learned in medical and graduate school. By bridging molecular concepts of pathogenesis to the clinical expression of disease in cell, tissue and organ, this fully updated, introductory reference provides the background necessary for an understanding of today's advances in pathology and medicine. - Explains the practice of "molecular medicine" and the translational aspects of molecular pathology, including molecular diagnostics, molecular assessment and personalized medicine - Orients non-pathologists on what pathologists look for and how they interpret their observational findings based on histopathology - Provides the reader with what is missing from most targeted introductions to pathology—the cell biology behind pathophysiology
Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.
During the last three decades, many laboratories worldwide have dedicated their research activities to understanding the roles of the cerebellum in motor control, cognitive processes and the biology of mental processes, behavioral symptoms and emotion. These advances have been associated with discoveries of new clinical disorders, in particular in the field of genetic ataxias, and the growing number of diseases presents a source of difficulty for clinicians during daily practice. This practical guide summarizes and evaluates current knowledge in the field of cerebellar disorders. Encompassing details of both common and uncommon cerebellar ataxias, including vascular, immune, neoplastic, infectious, traumatic, toxic and inherited disorders, this book will assist clinicians in the diagnosis and management of the full spectrum of cerebellar ataxias encountered in daily practice. Essential reading for clinicians, including general practitioners, neurologists, pediatricians, radiologists, psychiatrists and neuropsychologists, this will also prove a valuable tool for students, trainees and researchers.
The Molecular and Cellular Basis of Neurodegenerative Diseases: Underlying Mechanisms presents the pathology, genetics, biochemistry and cell biology of the major human neurodegenerative diseases, including Alzheimer's, Parkinson's, frontotemporal dementia, ALS, Huntington's, and prion diseases. Edited and authored by internationally recognized leaders in the field, the book's chapters explore their pathogenic commonalities and differences, also including discussions of animal models and prospects for therapeutics. Diseases are presented first, with common mechanisms later. Individual chapters discuss each major neurodegenerative disease, integrating this information to offer multiple molecular and cellular mechanisms that diseases may have in common. This book provides readers with a timely update on this rapidly advancing area of investigation, presenting an invaluable resource for researchers in the field. - Covers the spectrum of neurodegenerative diseases and their complex genetic, pathological, biochemical and cellular features - Focuses on leading hypotheses regarding the biochemical and cellular dysfunctions that cause neurodegeneration - Details features, advantages and limitations of animal models, as well as prospects for therapeutic development - Authored by internationally recognized leaders in the field - Includes illustrations that help clarify and consolidate complex concepts
Heritable human genome editing - making changes to the genetic material of eggs, sperm, or any cells that lead to their development, including the cells of early embryos, and establishing a pregnancy - raises not only scientific and medical considerations but also a host of ethical, moral, and societal issues. Human embryos whose genomes have been edited should not be used to create a pregnancy until it is established that precise genomic changes can be made reliably and without introducing undesired changes - criteria that have not yet been met, says Heritable Human Genome Editing. From an international commission of the U.S. National Academy of Medicine, U.S. National Academy of Sciences, and the U.K.'s Royal Society, the report considers potential benefits, harms, and uncertainties associated with genome editing technologies and defines a translational pathway from rigorous preclinical research to initial clinical uses, should a country decide to permit such uses. The report specifies stringent preclinical and clinical requirements for establishing safety and efficacy, and for undertaking long-term monitoring of outcomes. Extensive national and international dialogue is needed before any country decides whether to permit clinical use of this technology, according to the report, which identifies essential elements of national and international scientific governance and oversight.