Download Free Molecular Basis For Mitochondrial Signaling Book in PDF and EPUB Free Download. You can read online Molecular Basis For Mitochondrial Signaling and write the review.

This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more recent studies of mitochondria function, their communication with other organelles, and their critical roles in development, aging, and in a plethora of stressful or degenerative events. Authored by leading researchers in the field, this volume will be an indispensable reference resource for graduate students and academics working in related areas of biophysics and cell biology as well as for professionals within industry.
This new volume of our successful book series Advances in Anatomy, Embryology and Cell Biology is focused on mitochondrial inheritance in humans and both vertebrate and invertrebate animals including Drosophila, C. elegans, bivalve molusc Mytilus and livestock mammals. Special consideration is given to cellular mechanisms promoting uniparental inheritance of mitochondria and mitochondrial genes, evolutionary perspectives, and biomedical and epidemiological considerations. Contributed by five distinguished mitochondrial research teams from around the world, this volume will target a wide audience of physiologists, anatomists, cell, and developmental and evolutionary biologists, as well as physicians, veterinarians, livestock specialists and biomedical researchers.
The field of mitochondrial diseases is currently one of the rapidly growing fields of research in cell and molecular biology. This volume encompasses the latest development in this field of research. The chapters cover topics in a wide range of disciplines including biophysics, biochemistry, cell and molecular biology, molecular genetics, and clinical medicine. Summarizes growing evidence of the role of mitochondria in a large number of pathological conditions Brings together different approaches toward understanding mitochondria diseases Molecular and cellular biology Clinical physiology and medicine Details the crucial role this organelle plays in genetic regulation of various biological functions
Mitochondria have traditionally been associated with metabolic functions; however recent research has uncovered a central role for these organelles in cell signaling, cell survival, and cell death. Mitochondrial dysfunction is a factor in a myriad of pathophysiological conditions, including age-related neurodegenerative disorders, cancer, metabolic
The book describes molecular principles and mechanisms by which mitochondrial DNA (mtDNA) can drive the occurrence of diseases and the latest understanding of mtDNA biology. The book explores roles of mtDNA mutation and genetic changes in cancer, with a special focus on lung cancer, and the significance of approach, application, and bioethics of mtDNA sequencing. Authors made a great effort to overview roles of mtDNA signaling pathways, base excision repair, methylation, USP30-mediated regulation, mitochondrial ribosome, autophagy pathways, or ROS-dependent signaling in the pathogenesis, diagnosis, prevention and treatment of diseases. It also demonstrates the importance of basic mitochondrial genetics and the relationship between mutations and disease phenotypes and ageing. This book covers not only the basic information of mtDNA, the relationship of mtDNA and disease, but also mtDNA in stem cell and mitochondria and metabolism etc. The book is written for biological and clinical students and researchers in the field of mtDNA–associated diseases.
This book is indispensable to researchers in fields as diverse as Molecular Biology and Biophysics. It covers the important role that mitochondria play in a variety of biochemical spheres. It analyses how mitochondria affect metabolic pathways, how they are active in the regulation of cytosolic constituents, and their role in initiating signal pathways. Also covered are the way mitochondria help to regulate apoptosis, and how they modulate cellular hypertrophy and proliferation. It gives an overview of the emergence of mitochondria as an important regulator of cell signaling, with a particular focus on their pathophysiology.
Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.