Download Free Molecular Architectonics Book in PDF and EPUB Free Download. You can read online Molecular Architectonics and write the review.

This book draws on the main themes covered during the International Workshop on Molecular Architectonics which took place in Shiretoko, Japan from August 3 to 6, 2015. The concepts and results explored in this book relate to the term “molecular architectonics” which stands for electronic, optical and information-processing functions being orchestrated by molecular assemblies. This area is defined as the third stage of single-molecule electronics and builds on stage one, where measurements were performed on single-molecule layered films, and stage two, the resulting quantitative analyses. In this work, experts come together to write about the most important aspects of molecular architectonics. This interdisciplinary, visionary and unique book is of interest to scientists working on electronic materials, surface science and information processing sciences using noise and fluctuation.
This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists.
The concept of nanoarchitechtonics was introduced to describe the correct manipulation of nanoscale materials in the creation of nano-devices and applications. Nanoarchitectonics has begun to spread into many fields including nanostructured materials synthesis, supramolecular assembly, nanoscale structural fabrications, materials hybridizations, materials and structures for energy and environmental sciences, device and physical application, and bio- and medical applications. Following on from the 2012 title Manipulation of Nanoscale Materials, Concepts and Design of Materials Nanoarchitectonics covers the introductory features underlying the field, presenting a unifying overview of the theoretical aspects and emerging applications that are changing the capability to understand and design advanced functional materials. Edited by pioneers of the field, this book will appeal to researchers working in nanoscience, materials science, supramolecular chemistry, physical chemistry and organic chemistry, as well as graduate students in these areas.
Peptide Self-Assembly and Engineering State-of-the-art research in peptide self-assembly, with coverage of fundamental aspects of how peptides self-assemble and an extensive number of applications Peptide Self-Assembly and Engineering: Fundamentals, Structures, and Applications (2V set) covers the latest progresses in the field of peptide self-assembly and engineering, including the fundamental principles of peptide self-assembly, new theory of nucleation and growth, thermodynamics and kinetics, materials design rules, and precisely controlled structures and unique functions. The broad contents from this book enable readers to obtain a systematical and comprehensive knowledge in the field of peptide self-assembly and engineering. Contributed by the leading scientists and edited by a highly qualified academic and an authority in the field, Peptide Self-Assembly and Engineering includes information on: Emerging areas in peptide assembly, such as immune agents, bioelectronics, energy conversion, flexible sensors, biomimetic catalysis, and more Existing applications in biomedical engineering, nanotechnology, and photoelectronics, including tissue engineering, drug delivery, and biosensing devices History of peptide self-assembly for design of functional materials and peptides’ unique mechanical, optical, electronic, and biological properties Various solvent conditions, such as pH, ionic strength, and polarity, that can affect the structure and stability of peptide assemblies A very comprehensive reference covering the latest progresses in the field of peptide self-assembly and engineering, Peptide Self-Assembly and Engineering is an essential resource for all scientists performing research intersecting with the subject, including biochemists, biotechnologists, pharmaceutical chemists, protein chemists, materials scientists, and medicinal chemists.
Nucleic acids have structurally evolved over billions of years to effectively store and transfer genetic information. In the 1980s, Nadrian Seeman’s idea of constructing a 3D lattice from DNA led to utilizing DNA as nanomolecular building blocks to create emergent molecular systems and nanomaterial objects. This bottom-up approach to construct nanoscale architectures with DNA marked the beginning of a new field, DNA nanotechnology, contributing significantly to the broad area of nanoscience and nanotechnology. The molecular architectonics of small "designer" molecules and short DNA sequences through complementary binding interaction engenders well-defined functional nanoarchitectures with realistic applications in areas ranging from biology to materials science and is termed "DNA nanoarchitectonics." This book discusses novel approaches adapted by leading researchers from all over the world to create functional nucleic acid molecular systems and nanoarchitectures. Individual chapters contributed by active practitioners provide fundamental and advanced knowledge emanated from their own and others’ work. Each chapter includes numerous illustrations, historical perspectives, case studies and practical examples, critical discussions, and future prospects. This book can serve as a practical handbook or as a textbook for advanced undergraduate- and graduate-level students of nanotechnology and DNA nanotechnology, supramolecular chemistry, and nanoarchitectonics and researchers working on macromolecular science, nanotechnology, chemistry, biology, and medicine, especially those with an interest in sensors, biosensors, nanoswitches and nanodevices, diagnostics, drug delivery, and therapeutics.
Edited by foremost leaders in chemical research together with a number of distinguished international authors, this third volume summarizes the most important and promising recent developments in material science in one book. Interdisciplinary and application-oriented, this ready reference focuses on innovative methods, covering new developments in photofunctional materials, polymer chemistry, surface science and more. Of great interest to chemists as well as material scientists alike.
This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists. .
Written by the leading experts of this field, this book results from the International Symposium on “Single Molecule Machines on a Surface: Gears, Train of Gears, Motors, and Cars” which took place in Toulouse, France on November 24th - 25th, 2021. The different chapters focus on describing the use of single molecule mechanics on a surface and analyze the different steps leading to the design of a single molecule nanocar. The authors present how a single molecule is rotating, how a single molecule gear can participate to a train of molecule gears to propagate motion and how this knowledge is used for the design of nanocars. The way energy is provided to a single molecule and how this energy drives it onto the surface is also analyzed. A large portion of this volume is written by the eight teams selected to participate in the Nanocar Race II event. This book is of great use to graduate students, post-doctoral fellows and researchers who are interested in single molecule mechanics and who want to know more about the fundamentals and applications of this new research field.
The quantum transport theory, which dates back to the time of the Landauer theory in the field of mesoscopic physics, is now expanding its power on materials science and chemistry by earning chemical accuracy and physical reality and has become a new subject of non-equilibrium quantum transport theory for charge and heat at nanoscale. This growing subject invites cross-disciplinary developments, for example, the local heating theory developed earlier was examined and applied to the self-heating problem in the field of semiconductor- and nanoelectronic-device physics. This book compiles 25 key published papers to provide readers with convenient and comprehensive access to the important results and developments in the field. The book will appeal to a wide range of readers from varied backgrounds, especially those involved in charge- and/or heat-transport problems that widely spread over various subjects in materials science, chemistry, electric engineering, and condensed matter physics.
The ability to study and manipulate matter at the nanoscale is the defining feature of 21st-century science. The first edition of the standard-setting Handbook of Nanoscience, Engineering, and Technology saw the field through its infancy. Reassembling the preeminent team of leading scientists and researchers from all areas of nanoscience and nanote