Download Free Molecular Approaches To Ecology And Evolution Book in PDF and EPUB Free Download. You can read online Molecular Approaches To Ecology And Evolution and write the review.

"The last ten years have seen an explosion of activity in the application of molecular biological techniques to evolutionary and ecological studies. This volume attempts to summarize advances in the field and place into context the wide variety of methods available to ecologists and evolutionary biologists using molecular techniques. Both the molecular techniques and the variety of methods available for the analysis of such data are presented in the text. The book has three major sections - populations, species and higher taxa. Each of these sections contains chapters by leading scientists working at these levels, where clear and concise discussion of technology and implication of results are presented. The volume is intended for advanced students of ecology and evolution and would be a suitable textbook for advanced undergraduate and graduate student seminar courses." -- Publisher.
The past 25 years have witnessed a revolution in the way ecologists and evolutionary biologists approach their disciplines. Modern molecular techniques are now reshaping the spectrum of questions that can be addressed while studying the mechanisms and consequences of the ecology and evolution of living organisms. "Molecular Ecology and Evolution: Approaches and Applications" describes, from a molecular perspective, several methodological and technical approaches used in the fields of ecology, evolution, population biology, molecular systematics, conservation genetics, and development. Modern techniques are introduced, and older, more classic ones refined. The advantages, limitations, and potentials of each are discussed in detail, and thereby illustrate the widening range of cross-field research and applications which this modern technology is stimulating. This book will serve as an important textbook for graduate and advanced undergraduate students, and as a key reference work for researchers
Four years ago we edited a volume of 36 papers entitled Molecular Approaches to Ecology and Evolution (Schierwater et ai. , 1994), in which we attempted to put to gether a diverse array of papers that demonstrated the impact that the technologi cal revolution ofmolecular biology has had on the field ofevolutionary biologyand ecology. The present volume borrows from that theme but attempts to focus more sharply on the impact that molecular biology has had on our understanding of dif ferent hierarchical levels important in evolutionary and ecological studies. Because DNA sequence variation is at the heart ofeverypaper in the present volume, we feel it necessary to examine how DNA has affected study at various levels of biological organization. The majority of the chapters in the present volume follow themes es tablished in the earlier volume; all chapters by authors in the previous volume are either fully updated or entirely new and expand into areas that we felt were impor tant for a more complete understanding of the impact of DNA technology on ecol ogy and evolution. The collection of papers in this volume cover a diverse array of ecological and evolutionary questions and demonstrates the breadth of coverage molecular tech nology has imparted on modern evolutionary biology. There are also a broad range of hierarchical questions approached by the 17 papers in this volume.
The incorporation of molecular methods in ecological research has added an exciting new dimension to conventional studies, and opened windows into previously intractable areas of research, at the interface between ecology and genetics. Using these new methods it has now become routine to use genetic markers to study ecological phenomena, from molecular sexing of individuals and parentage of offspring, through to population structure of species and phylogenetic relationships of taxa. These methods have stimulated an explosion of empirical and analytical developments in molecular ecology, which have in turn, increasingly attracted students and professional biologists eager to employ them in their studies. Molecular Methods in Ecology traces the development of molecular ecology by reviewing basic molecular biological techniques and earlier methods such as protein electrophoresis, DNA-DNA hybridisation, restriction analysis of DNA, and DNA fingerprinting. Later chapters review methods using newer classes of markers such as microsatellites, introns, MHC, SSRs and AFLP markers in plants and molecular sexing in animals. The strengths and limitations of methods are discussed and guidance is provided in selecting the most appropriate methods for particular problems in ecology. This book will provide both postgraduates and researchers with a guide to choosing and employing appropriate methodologies for successful research in the field of molecular ecology. Provides up-to-date summaries of the latest molecular approaches in this rapidly expanding field. Gives guidance on the appropriate choice of methods for particular problems in ecology, and their strengths and limitations. Provides brief laboratory protocols for each molecular method and summaries of software available for analysis of data in molecular ecology. Outlines examples of the latest research results from studies of both plants and animals, integrated within the framework of molecular ecology.
This work provides a unified theory that addresses the important problem of the origin and maintenance of genetic variation in natural populations. With modern molecular techniques, variation is found in all species, sometimes at astonishingly high levels. Yet, despite these observations, the forces that maintain variation within and between species have been difficult subjects of study. Because they act very weakly and operate over vast time scales, scientists must rely on indirect inferences and speculative mathematical models. However, despite these obstacles, many advances have been made. The author's research in molecular genetics, evolution, and bio-mathematics has enabled him to draw on this work, and present a coherent and valuable view of the field. The book is divided into three parts. The first consists of three chapters on protein evolution, DNA evolution, and molecular mechanisms. This section reviews the experimental observations on genetic variation. The second part gives a unified treatment of the mathematical theory of selection in a fluctuating environment. The final two chapters combine the earlier assessments in a treatment of the scientific status of two competing theories for the maintenance of genetic variation. Steeped in the enormous advances population genetics has made over the past 25 years, this book has proven highly popular among human geneticists, biologists, evolutionary theorists, and bio-mathematicians.
Recent advances in molecular genetics and genomics have been embraced by many in natural resource conservation. Today, several major conservation and management journals are now using 'genetics' editors to deal solely with the influx of manuscripts that employ molecular data. The editors have attempted to synthesize some of the major uses of molecular markers in natural resource management in a book targeted not only at scientists but also at individuals actively making conservation and management decisions. To that end, the text features contributors who are major figures in molecular ecology and evolution - many having published books of their own. The aim is to direct and distil the thoughts of these outstanding scientists by compiling compelling case histories in molecular ecology as they apply to natural resource management.
Molecular approaches have opened new windows on a host of ecological and evolutionary disciplines, ranging from population genetics and behavioral ecology to conservation biology and systematics. Molecular Markers, Natural History and Evolution summarizes the multi-faceted discoveries about organisms in nature that have stemmed from analyses of genetic markers provided by polymorphic proteins and DNAs. The first part of the book introduces rationales for the use of molecular markers, provides a history of molecular phylogenetics, and describes a wide variety of laboratory methods and interpretative tools in the field. The second and major portion of the book provides a cornucopia of biological applications for molecular markers, organized along a scale from micro-evolutionary topics (such as forensics, parentage, kinship, population structure, and intra-specific phylogeny) to macro-evolutionary themes (including species relationships and the deeper phylogenetic structure in the tree of life). Unlike most prior books in molecular evolution, the focus is on organismal natural history and evolution, with the macromolecules being the means rather than the ends of scientific inquiry. Written as an intellectual stimulus for the advanced undergraduate, graduate student, or the practicing biologist desiring a wellspring of research ideas at the interface of molecular and organismal biology, this book presents material in a manner that is both technically straightforward, yet rich with concepts and with empirical examples from the world of nature.
Plant evolutionary ecology is a rapidly growing discipline which emphasizes that populations evolve and adapt not in isolation, but in relation to other species and abiotic environmental features such as climate. By combining approaches from the traditional evolutionary and ecological fields of study, evolutionary ecology is connected to branches of population biology, genetics, botany, conservation, and to other fields of applied science, primarily through shared concepts and techniques. However, other books regarding evolutionary ecology typically focus on animals, creating a substantial need for a synthesis of the scholarly literature with an emphasis on plants. Approaches to Plant Evolutionary Ecology is the first book to specifically explore the evolutionary biology of plant populations. Renowned plant ecologist G. P. Cheplick summarizes and synthesizes much of the primary literature regarding evolutionary perspective. The book also provides summaries of both traditional (common gardens, reciprocal transplants) and modern (molecular genetic) approaches used to address questions about plant adaptation to a diverse group of abiotic and biotic factors. Cheplick provides a rigorously written introduction to the rapidly growing field of plant evolutionary ecology that will appeal to undergraduate and graduate students with an interest in ecology and evolution, as well as educators who are teaching courses on related topics. -- from back cover.
The amount of information that can be obtained by using molecular techniques in evolution, systematics and ecology has increased exponentially over the last ten years. The need for more rapid and efficient methods of data acquisition and analysis is growing accordingly. This manual presents some of the most important techniques for data acquisition developed over the last years. The choice and justification of data analysis techniques is also an important and critical aspect of modern phylogenetic and evolutionary analysis and so a considerable part of this volume addresses this important subject. The book is mainly written for students and researchers from evolutionary biology in search for methods to acquire data, but also from molecular biology who might be looking for information on how data are analyzed in an evolutionary context. To aid the user, information on web-located sites is included wherever possible. Approaches that will push the amount of information which systematics will gather in the
The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility.