Download Free Molecular And Multi Omic Approaches In Understanding Cancer Biology And Anticancer Therapies Current Perspectives And New Challenges Book in PDF and EPUB Free Download. You can read online Molecular And Multi Omic Approaches In Understanding Cancer Biology And Anticancer Therapies Current Perspectives And New Challenges and write the review.

Drug Repurposing in Cancer Therapy: Approaches and Applications provides comprehensive and updated information from experts in basic science research and clinical practice on how existing drugs can be repurposed for cancer treatment. The book summarizes successful stories that may assist researchers in the field to better design their studies for new repurposing projects. Sections discuss specific topics such as in silico prediction and high throughput screening of repurposed drugs, drug repurposing for overcoming chemoresistance and eradicating cancer stem cells, and clinical investigation on combination of repurposed drug and anticancer therapy. Cancer researchers, oncologists, pharmacologists and several members of biomedical field who are interested in learning more about the use of existing drugs for different purposes in cancer therapy will find this to be a valuable resource. - Presents a systematic and up-to-date collection of the research underpinning the various drug repurposing approaches for a quick, but in-depth understanding on current trends in drug repurposing research - Brings better understanding of the drug repurposing process in a holistic way, combining both basic and clinical sciences - Encompasses a collection of successful stories of drug repurposing for cancer therapy in different cancer types
An overview of the current systems biology-based knowledge and the experimental approaches for deciphering the biological basis of cancer.
Novel Designs of Early Phase Trials for Cancer Therapeutics provides a comprehensive review by leaders in the field of the process of drug development, the integration of molecular profiling, the changes in early phase trial designs, and endpoints to optimally develop a new generation of cancer therapeutics. The book discusses topics such as statistical perspectives on cohort expansions, the role and application of molecular profiling and how to integrate biomarkers in early phase trials. Additionally, it discusses how to incorporate patient reported outcomes in phase one trials. This book is a valuable resource for medical oncologists, basic and translational biomedical scientists, and trainees in oncology and pharmacology who are interested in learning how to improve their research by using early phase trials.
The occurrence of 5-methylcytosine in DNA was first described in 1948 by Hotchkiss (see first chapter). Recognition of its possible physiologi cal role in eucaryotes was first suggested in 1964 by Srinivasan and Borek (see first chapter). Since then work in a great many laboratories has established both the ubiquity of 5-methylcytosine and the catholicity of its possible regulatory function. The explosive increase in the number of publications dealing with DNA methylation attests to its importance and makes it impossible to write a comprehensive coverage of the literature within the scope of a general review. Since the publication of the 3 most recent books dealing with the subject (DNA methylation by Razin A. , Cedar H. and Riggs A. D. , 1984 Springer Verlag; Molecular Biology of DNA methylation by Adams R. L. P. and Burdon R. H. , 1985 Springer Verlag; Nucleic Acids Methylation, UCLA Symposium suppl. 128, 1989) considerable progress both in the techniques and results has been made in the field of DNA methylation. Thus we asked several authors to write chapters dealing with aspects of DNA methyla tion in which they are experts. This book should be most useful for students, teachers as well as researchers in the field of differentiation and gene regulation. We are most grateful to all our colleagues who were willing to spend much time and effort on the publication of this book. We also want to express our gratitude to Yan Chim Jost for her help in preparing this book.
This collection of 25 research papers comprised of 22 original articles and 3 reviews is brought together from international leaders in bioinformatics and biostatistics. The collection highlights recent computational advances that improve the ability to analyze highly complex data sets to identify factors critical to cancer biology. Novel deep learning algorithms represent an emerging and highly valuable approach for collecting, characterizing and predicting clinical outcomes data. The collection highlights several of these approaches that are likely to become the foundation of research and clinical practice in the future. In fact, many of these technologies reveal new insights about basic cancer mechanisms by integrating data sets and structures that were previously immiscible. Accordingly, the series presented here bring forward a wide range of artificial intelligence approaches and statistical methods that can be applied to imaging and genomics data sets to identify previously unrecognized features that are critical for cancer. Our hope is that these articles will serve as a foundation for future research as the field of cancer biology transitions to integrating electronic health record, imaging, genomics and other complex datasets in order to develop new strategies that improve the overall health of individual patients.
In an era of promising advances in cancer research, there are considerable and even alarming gaps in the fundamental knowledge and understanding of ovarian cancer. Researchers now know that ovarian cancer is not a single disease-several distinct subtypes exist with different origins, risk factors, genetic mutations, biological behaviors, and prognoses. However, persistent questions have impeded progress toward improving the prevention, early detection, treatment, and management of ovarian cancers. Failure to significantly improve morbidity and mortality during the past several decades is likely due to several factors, including the lack of research being performed by specific disease subtype, lack of definitive knowledge of the cell of origin and disease progression, and incomplete understanding of genetic and non-genetic risk factors. Ovarian Cancers examines the state of the science in ovarian cancer research, identifies key gaps in the evidence base and the challenges to addressing those gaps, considers opportunities for advancing ovarian cancer research, and examines avenues for translation and dissemination of new findings and communication of new information to patients and others. This study makes recommendations for public- and private-sector efforts that could facilitate progress in reducing the incidence of morbidity and mortality from ovarian cancers.
Proceedings of the 2nd Annual IFOM-IEO Meeting on Cancer. This is a new meeting, it has about 200 attendees from Australia, Austria, Belgium, Brazil, Canada, England, France, Germany, Greece, Ireland, Italy, Japan, Netherlands, Spain, Sweden, Switzerland, and the USA. The 2nd IFOM-IEO international meeting on cancer will provide a forum in which the world’s leading cancer researchers and young scientists will discuss the latest advances in molecular oncology. The impact of recent breakthroughs in basic research and of emerging technologies on molecular medicine in cancer will be highlighted.
Advances in cancer research have led to an improved understanding of the molecular mechanisms underpinning the development of cancer and how the immune system responds to cancer. This influx of research has led to an increasing number and variety of therapies in the drug development pipeline, including targeted therapies and associated biomarker tests that can select which patients are most likely to respond, and immunotherapies that harness the body's immune system to destroy cancer cells. Compared with standard chemotherapies, these new cancer therapies may demonstrate evidence of benefit and clearer distinctions between efficacy and toxicity at an earlier stage of development. However, there is a concern that the traditional processes for cancer drug development, evaluation, and regulatory approval could impede or delay the use of these promising cancer treatments in clinical practice. This has led to a number of effortsâ€"by patient advocates, the pharmaceutical industry, and the Food and Drug Administration (FDA)â€"to accelerate the review of promising new cancer therapies, especially for cancers that currently lack effective treatments. However, generating the necessary data to confirm safety and efficacy during expedited drug development programs can present a unique set of challenges and opportunities. To explore this new landscape in cancer drug development, the National Academies of Sciences, Engineering, and Medicine developed a workshop held in December 2016. This workshop convened cancer researchers, patient advocates, and representatives from industry, academia, and government to discuss challenges with traditional approaches to drug development, opportunities to improve the efficiency of drug development, and strategies to enhance the information available about a cancer therapy throughout its life cycle in order to improve its use in clinical practice. This publication summarizes the presentations and discussions from the workshop.
This book will serve as a primer for both laboratory and field scientists who are shaping the emerging field of molecular epidemiology. Molecular epidemiology utilizes the same paradigm as traditional epidemiology but uses biological markers to identify exposure, disease or susceptibility. Schulte and Perera present the epidemiologic methods pertinent to biological markers. The book is also designed to enumerate the considerations necessary for valid field research and provide a resource on the salient and subtle features of biological indicators.