Download Free Molecular And Cellular Insights To Ion Channel Biology Book in PDF and EPUB Free Download. You can read online Molecular And Cellular Insights To Ion Channel Biology and write the review.

Annotation Contains fresh perspectives and up-to-date view points from international experts Illustrates the diverse array of techniques applied to ion channel research Represents a valuable resource to both the beginner and expert researcher, with over 2500 references and more than 100 figures and tables.
Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st
This new, fully revised and expanded edition of Ionic Channels of Excitable Membranes includes new chapters on fast chemical synapses, modulation through G protein coupled receptors and second messenger systems, molecules cloning, site directed mutagenesis, and cell biology. It begins with the classical biophysical work of Hodgkin and Huxley and then weaves a description of the known ionic channels together with their biological functions. The book continues by developing the physical and molecular principles needed for explaining permeation, gating, pharmacological modification, and molecular diversity, and ends with a discussion of channel evolution. Ionic Channels of Excitable Membranes is written to be accessible and interesting to biological and physical scientists of all kinds.
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology. This series has been a mainstay for practicing scientists and students interested in this critical field of biology. Articles covered in the volume include ENaC Proteins in Vascular Smooth Muscle Mechanotransduction; Regulation of the Mechano-Gated K2P Channel TREK-1 by Membrane Phospholipids; MechanoTRPs and TRPA1; TRPC; The Cytoskeletal Connection to Ion Channels as a Potential Mechanosensory Mechanism. Lessons From Polycystin-2 (TRPP2); Lipid Stress at Play: Mechanosensitivity of Voltage-Gated Channels; Hair Cell Mechanotransduction: The Dynamic Interplay between Structure and Function; Pharmacology of Hair Cell MS Channels; Hair Cell Mechanotransduction; Models of Hair Cell Mechanotrasduction; Touch; Mechanosensitive Ion Channels in Dystrophic Muscle; Mechanotransduction in Endothelial Cells;MS Channels in Tumor Cell Migration; Mechanosensitive Channels in Regulating Smooth Muscle Contraction in the GI; Mechanosensitive Ion Channels in Blood-Pressure-Sensing Baroreceptor Neurons.
Volume 33 reviews the current understanding of ion channel regulation by signal transduction pathways. Ion channels are no longer viewed simply as the voltage-gated resistors of biophysicists or the ligand-gated receptors of biochemists. They have been transformed during the past 20 years into signaling proteins that regulate every aspect of cell physiology. In addition to the voltage-gated channels, which provide the ionic currents to generate and spread neuronal activity, and the calcium ions to trigger synaptic transmission, hormonal secretion, and muscle contraction, new gene families of ion channel proteins regulate cell migration, cell cycle progression, apoptosis, and gene transcription, as well as electrical excitability. Even the genome of the lowly roundworm Caenorhabditis elegans encodes almost 100 distinct genes for potassium-selective channels alone. Most of these new channel proteins are insensitive to membrane potential, yet in humans, mutations in these genes disrupt development and increase individual susceptibility to debilitating and lethal diseases.How do cells regulate the activity of these channels? How might we restore their normal function? In Ion Channel Regulation, many of the experts who pioneered these discoveries provide detailed summaries of our current understanding of the molecular mechanisms that control ion channel activity. - Reviews brain functioning at the fundamental, molecular level - Describes key systems that control signaling between and within cells - Explains how channels are used to stimulate growth and changes to activity of the nucleus and genome
Many advances have been made in the last decade in the understanding of the computational principles underlying olfactory system functioning. Neuromorphic Olfaction is a collaboration among European researchers who, through NEUROCHEM (Fp7-Grant Agreement Number 216916)-a challenging and innovative European-funded project-introduce novel computing p
This book provides a unique contemporary and succinct distillation of the current status of recently delineated electrical diseases of the heart, emphasizing their common and diverse clinical features. The latest developments in the field of experimental and clinical cardiac electrophysiology, genetics, pharmacology and interventional therapies of various clinical arrhythmogenic entities are featured and discussed in terms of recent advances in basic and clinical science. The book is divided into seven major parts. Each part consists of chapters (total of 64) dealing with related topics.
Increasing interest has been emerging in the last decade in the field of signal recognition and transduction. This is particularly true for animal systems where an impressive amount of literature is appearing and where many important pathways have been clarified at a molecular level. In the elucidation of the functions of single components of a given pathway, gene cloning has played a major role and opened the field to the genetic engineering of these complex systems. At variance with this situation, plant systems are less well elucidated, even if in recent years exciting research of developments have been initiated especially with the view toward the most promising role plants in biotechnology. Recent studies have elucidated some of the events involved in the perception of the plant hormone signals and some steps concerning its transduction. Only for three of the five hormones in plants, namely auxin, ethylene and cytokinins, have specific receptors been isolated. The use of classical molecular approaches, together with the more recently isolated mutants, have produced crucial information on receptors and shed light on possible transduction pathways. As in the case of red light, more than one pathway can be triggered by one specific signal. Many systems involved in animal signaling are now shown to be present also in plants, and in view of the fast progress in this area, it will be possible in the near future to fully describe the content of the "black boxes" in the reaction chain specifically triggered by a signal.
Ion channel dysfunction in humans leads to impairment of the excitable processes necessary for the normal function of several tissues, such as muscle and brain. It follows that an increasing number of human diseases have been associated with malfunctioning ion channels, many of which have a genetic component. This volume of Advances in Genetics presents a broad and comprehensive overview of the inherited channelopathies in humans, including clinical, genetic and molecular aspects of these conditions. Keeping true to the scope of the serial, novel genomic and modeling research approaches and a review of potential therapeutic approaches for each of these conditions are also incorporated.