Download Free Moisture Damage Of Asphalt Pavements Book in PDF and EPUB Free Download. You can read online Moisture Damage Of Asphalt Pavements and write the review.

This synthesis will be of interest to pavement designers, construction engineers, maintenance engineers, and others interested in avoiding or limiting moisture damage in asphalt concrete. Information is provided on physical and chemical explanations for moisture damage in asphalt concrete, along with a discussion of current practices and test methods for determining or reducing the susceptibility of various asphalt concrete components and mixtures to such damage. Moisture damage in asphalt concrete is a nationwide problem which often necessitates premature replacement of highway pavement surfaces. This report of the Transportation Research Board describes the underlying physical and chemical phenomena responsible for such damage. Current test methods used to determine the susceptibility of asphalt concretes, or their constituents, to moisture damage are described and evaluated. Additionally, current practices for minimizing the potential for moisture damage are examined.
Abstract: Moisture-induced damage is one the major causes of deterioration of asphalt pavements and extensive research has been conducted on this topic. Theoretical and experimental results have led the researchers to believe that moisture-induced damages are caused mainly by the generation of pore water pressure in asphalt mixtures when traffic passes over a pavement. The Moisture Induced Sensitivity Tester (MIST) has been recently developed to simulate the phenomenon of repeated pore pressure generation and deterioration in the laboratory. The objective of this study was to evaluate moisture-induced damage in typical Maine Department of Transportation (DOT) asphalt mixes, with the use of MIST, pre and post testing, and analysis of data. The MIST was used to condition Hot Mix Asphalt (HMA) samples that were compacted from eight typical Maine DOT mixes, with different types of aggregates and asphalt binder. A modified Dynamic modulus test in Indirect Tensile Mode was used for the determination of damage. A layered elastic model, along with a fatigue-cracking criterion, was utilized to assess the total impact on the pavement lives. Monte Carlo analysis was conducted to determine the distribution of number of repetitions to failure of pavements that are subjected to moisture damage. The major conclusions are that most of the mixes are likely to experience a reduction in their life due to the effect of moisture and that the Micro-Deval and the fine aggregate absorption test results can be related to such damage. A composite factor, consisting of both of these test results, is recommended for regular use by the DOT to screen mixes with high moisture damage potential.
A technical review of moisture damage of asphalt pavements and antistripping additives has beencompleted as part of a review and testing study for the Transportation Association of Canada that has the objective of developing a Canadian manual on the assessment of moisture susceptibility and selection of antistripping additives. The review is based on practical asphalt technology experience, questionnaires to agencies and asphalt cement suppliers, and the technical literature on moisture damage of asphalt pavements. Methods of mitigating moisture damage in asphalt pavement structures, in addition to the use of antistripping additives, such as drainage, compaction, aggregates selection, mix designs and quality control, were reviewed in terms of stripping mechanisms and causes. The Strategic Highway Research Program has involved considerable research on the moisture susceptibility of asphalt concrete and appropriate laboratory procedures to assess moisture damage. Qualitative and quantitative (strength) tests for assessing the moisture susceptibility of hot-mix asphalt mixes are reviewed. There is strong technical support for the Tunnicliff-Root (ASTM D 4867), Modified Lottman (AASHTO T 283) and Ontario MTO Immersion Marshall (LS-283) tests. The use of liquid (amines generally) and hydrated lime antistripping additives is considered. There is considerable technical information on the comparative efficacy of hydrated lime as an antistripping additive. An important area of research need is appropriate quality control/quality assurance to monitor the field effectiveness of antistripping additives. For the covering abstract of this conference see IRRD number 872978.
The urgent need for infrastructure rehabilitation and maintenance has led to a rise in the levels of research into bituminous materials. Breakthroughs in sustainable and environmentally friendly bituminous materials are certain to have a significant impact on national economies and energy sustainability. This book will provide a comprehensive review on recent advances in research and technological developments in bituminous materials. Opening with an introductory chapter on asphalt materials and a section on the perspective of bituminous binder specifications, Part One covers the physiochemical characterisation and analysis of asphalt materials. Part Two reviews the range of distress (damage) mechanisms in asphalt materials, with chapters covering cracking, deformation, fatigue cracking and healing of asphalt mixtures, as well as moisture damage and the multiscale oxidative aging modelling approach for asphalt concrete. The final section of this book investigates alternative asphalt materials. Chapters within this section review such aspects as alternative binders for asphalt pavements such as bio binders and RAP, paving with asphalt emulsions and aggregate grading optimization. - Provides an insight into advances and techniques for bituminous materials - Comprehensively reviews the physicochemical characteristics of bituminous materials - Investigate asphalt materials on the nano-scale, including how RAP/RAS materials can be recycled and how asphalt materials can self-heal and rejuvenator selection
This volume contains selects papers presented during the 2nd International Conference on Environmental Geotechnology, Recycled Waste Materials and Sustainable Engineering, held in the University of Illinois at Chicago. It covers the recent innovations, trends, and concerns, practical challenges encountered, and the solutions adopted in waste management and engineering, geotechnical and geoenvironmental engineering, infrastructure engineering, and sustainable engineering. This book will be useful for academics, educators, policy makers and professionals working in the field of civil engineering, chemical engineering, environmental sciences and public policy.
This report summarizes the results of determining the moisture susceptibility by the primary test methods: (a) Original Lottman Method. (b) Modified Lottman Method (Tex-531-C); (c) Tunniclif f-Root Method; and (d) Boiling Test (Tex-530-C). Comparisons were made between the laboratory mixtures, plant mixtures, and cores obtained from the field test sections to determine the effectiveness of the various antistripping additives and to evaluate the various methods for measuring that effectiveness.